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Introduction:  Mars is a red planet with basaltic 

crust rich in iron element. Laser induced breakdown 

spectroscopy (LIBS) is a quick element analysis 

technique which has been used by Curiosity rover in 

Mars exploration. LIBS spectra of iron have abundant 

peaks (mainly at 240~340 nm, 380~480 nm and 

490~570 nm). How to better utilize those abundant 

peaks for precise quantitative analysis of iron is a key 

question for LIBS application in Mars exploration.  

Root-mean-square error (RMSE) value of FeOT in 

old PLS1 and ICA model is larger than other major 

element except SiO2 [1]. Prediction error of iron 

decreased when FeOT was predicted by the model 

which choose different latent variables at various range 

(wt.%) of iron (PLS1-SM) [2], which suggest the 

significance of input data for the quantitative model of 

iron. David et al. [3] cautiously processed input data of 

their calibration model of iron based on the correction 

coefficient between spectra and abundance of iron.  

However, the relationship between iron and intensity 

of each channel may be complex due to element 

substitution and paragenetic association. With the 

purpose of better quantitative analysis of iron, we 

investigated LIBS peaks overlay between iron and 

other major elements, feature selection of iron, and 

compared the results of different quantitative iron 

models for basaltic samples. 

Methods: There are three penalized shrunken 

regression methods (ridge regression, lasso regression 

and elastic net) [4], all of which aim to decrease the 

size of channels for LIBS spectra. The penalty of ridge 

regression is L2 penalty, of lasso regression is L1 

penalty and of elastic net is combination of L1 and L2 

penalty (a*L1+b*L2). Briefly, L1 is the sum of 

absolute values of coefficients and L2 is the sum of 

squared coefficients. The amount of penalization for 

those three regularization techniques were calculated 

by 5-fold cross validation; L1_ratio (a/(a+b)) in elastic 

net is a default number (0.5). PLS1-SM also was used 

to analyze iron in basalt in addition to three penalized 

shrunken regression models. LIBS spectra of 21 

basalts or standards mixed basalts were selected from 

ChemCam 408 standards [1].  

Results and discussions: Analyses of peak overlay 

between iron and other major elements indicate that 

there are a large number of overlapping iron peaks. 

Iron lines strongly overlap with Ti and Al. The number 

of iron lines is 54 (39) when interval of peak center 

between Fe and Ti (Al) less than 0.1 nm, and the 

number of overlapped iron lines is 108 (for Ti) and 48 

(for Al) when the threshold of interval of peak center is 

0.2 nm. Effect of peak overlay affect the accuracy of 

quantitative analyses iron. Feature selection could help 

to diminish the effect of peak overlay by choose un-

overlapped lines. The key function of feature selection 

is the removal of redundant and irrelevant features; 

redundant features are strongly correlated with each 

other. We selected the 17 highest scoring channels of 

basalt using SelectKBest in order to check the 

redundancy of channels after feature selection. Those 

channels could be classified into six peaks (302.1, 

299.5, 259.9, 748, 311.1 and 248.4 nm). 

LIBS spectral features were selected by lasso and 

elastic net (Fig. 1). Features number of elastic net is 

larger than lasso due to the difference of both penalties. 

Though the number and intensity of the coefficients for 

both models are diverse, there are some features at 

same wavelength. For example, features selected by 

both models all have a negative coefficient at 334.9 nm 

and a positive coefficient at 259.9 nm which is one of 

the highest scoring channels for iron in basalt. Feature 

at 259.9 nm is a peak of Fe Ⅱ and that at 334.9 nm is a 

peak of Ti Ⅱ. Peaks at 259.9 and 334.9 nm are not 

disturbed by peaks of other elements even Mg have 

peaks (258.6 and 260.7 nm) around 259.9 nm. Area of 

peak 259.9 nm has a positive relation with Fe (wt.%) 

in basalt and the data were best fit with a second-order 

polynomial. Area of peak at 334.9 nm negatively 

correlated with Fe (wt.%) in basalt. 

 
Figure 1. LIBS spectra of Fe [5] and coefficient of features 

selected by lasso and elastic net. Vertical axis is scaled for 

clarity. 
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LIBS spectra of basalts or mixed basalt selected 

from ChemCam 408 standards were classified into two 

sets, one is test set (five standards) and remaining is 

training set. Five models (elastic net, lasso, ridge, 

PLS1 and PLS1-SM) were used to predict iron within 

standards. The Root-mean-square error of prediction 

(RMSEP) of each model is 1.73 (for elastic net), 1.26 

(for lasso), 2.03 (for ridge), 3.87 (for PLS1) and 1.69 

(for PLS-SM), and them are comparable except PLS1. 

Those penalized shrunken models were then used to 

investigate LIBS spectra measured on Mars.  

The models were trained with all laboratory basalt 

spectra, and then predicted the Fe (wt.%) in four 

CCCTs. LIBS spectra of three CCCTs (NAu2HiS, 

NAu2MedS and NAu2LowS) which have basalt 

matrix and anther CCCT (basaltic Shergottite) were 

download from Planetary Data System (https://pds-

geosciences.wustl.edu/msl/msl-m-chemcam-libs-4_5-

rdr-v1/mslccm_1xxx/data/). RMSEPs of four CCCTs 

are shown in Fig. 2. RMSEPs of Fe in those CCCTS 

which have basalt matrix when using elastic net and 

ridge are less than Ref.[1] and when using lasso are 

comparable with Ref.[1]. Same matrix (basalt) also 

contributes to the smaller RMSEP besides quantitative 

analyses models.  

 
Figure 2. RMSEPs of three models (Elastic net, Ridge, Lasso 

and Clegg et al., 2017) for four CCCTs. 

Those different models were used to analyses the 

iron within igneous rocks (Fig. 3) in Gale Crater. 

Targets Kodak and Ravalli were both measured by 

LIBS and APXS. Abundance of FeOT for Kodak 

predicted by the ChemCam team are largely varying 

and are far away from the value of APXS. Our 

predictions are between the values of APXS and MOC, 

and the variations between points is much less. For 

another target (Ravalli), the values measured by APXS 

and the predictions of ChemCam team are more 

consistent compared to those of ridge and elastic net. 

Differences of measured area and deep between APXS 

and LIBS are likely responsible for the difference of 

FeOT. Predictions of FeOT for two basaltic targets, 

Ashuanipi and La_Reine, are larger and more variable 

when using the model of ChemCam team and lasso 

compared to ridge and elastic net. Predictions of 

different points on same target using ridge and elastic 

net are more robust than lasso and combination of 

PLS-SM and ICA. Predict performances of lasso and 

the combined model are similar (larger and varying). 

In a word, penalized shrunken regression methods are 

generally much more efficient regression models in 

LIBS study particularly for special rock or mineral 

group rather than all calibration targets. More detailed 

analyses of those models especially elastic net will be 

done based on more LIBS standards [6]. 

 
Figure 3. Predictions of iron with different models. 
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