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Introduction: ​Space-based observatories such as     

TESS (Transiting Exoplanet Survey Satellite [1])      
produce light curves of hundreds of thousands of stars         
over their mission lifetimes. A tiny fraction of these         
stars shows periodic dips in brightness, resulting from        
one or more orbiting planets crossing in front of the          
stellar surface in our line of sight. While the physics of           
transiting planets is well-understood, the search for       
their signatures in light curves is hindered by stellar         
and spacecraft induced noise. In order to distinguish        
transit signatures from noise and underlying complex       
patterns in the data, Deep Learning (DL) is expected to          
play an important role, especially in future missions        
such as PLATO [2]. However, while the abundance of         
data continues to grow, the development of DL-based        
methods for this task seems to lag behind. In this work,           
we set up a framework for developing and comparing         
methods for detecting transits in simulated light       
curves. Furthermore, research prospects are given in       
line of this work, on the exploration of Recurrent         
Neural Networks (RNNs) and their application to real        
TESS data containing known transiting exoplanets. 

 
Background: ​The steps of transit discovery may       

be categorized as detection, validation and      
characterization. Often, these steps require some form       
of preprocessing or detrending of the data. However,        
commonly used approaches for detrending such as       
median filtering or the use of Gaussian Processes        
(GPs) may distort the transit signals [3]. To avoid this,          
[4] proposed to model transits simultaneously with the        
background noise. Another approach is to exploit the        
flexibility of Neural Networks (NNs), which are       
known for their ability to learn complex patterns from         
data, often by utilizing labeled training examples. In        
recent years, Convolutional NNs (CNNs) have been       
explored for detection by [5-7]. RNNs, which are        
designed specifically for sequential data, were used for        
detrending by [8], but they assumed the transits to be          
known beforehand. Naturally, a next step could be to         
explore RNNs for transit detection.  

 
Methods: ​DL-approaches generally require labeled     

training data, so we opted to use simulated data for the           
development and comparison of methods. This allows       
us to compare the ‘ground-truth’ of a sample with the          
predictions made by the detection method. In order to         
mimic light curves as observed by TESS, each sample         
is constructed using GPs similar to [6]. Different than         
[6], we describe the process of stellar variability as a          

mixture of stochastically-driven damped harmonic     
oscillators, following [9]. Transits are generated from a        
range of parameters and injected into a portion of the          
light curves, making use of ​batman ​[10]. To reduce         
the amount of unrealistic samples, parameter ranges       
were chosen to approximately match with those of        
known stars and exoplanets. These parameters include,       
for example, orbital period, transit duration and planet        
radius relative to its host star. However, as we are now           
in complete control over the data, we may also choose          
to simulate only, for example, small planets with long         
periods, or planets in multi-planet systems. Lastly,       
large gaps and missing values can be varied per sample          
to simulate imperfections, which need to be taken into         
account when applying a transit detection method to        
real-world data. Fig 1 shows a randomly generated        
light curve compared to real TESS data. Together with         
auxiliary variables such as stellar parameters, these       
samples are used to create datasets for the training and          
testing of DL-methods. 

 

Fig 1. (top) Simulated light curve with ‘ground-truth’        
transits; (bottom) TESS light curve of TIC 243271623. 
 

Experiment and results: ​As an initial experiment,       
we applied the box least squares (BLS) algorithm [11]         
to search for transits in a set of 5k simulated light           
curves of 2-minute cadence. For detrending, we used a         
time-windowed median filter with a window of 0.5        
days. Each light curve contained at least two transits of          
a single planet, so the detection method could be         
evaluated on its ability to retrieve the correct orbital         
period ​P ​and the time of the first transit ​t​0​. Note that            
the samples in this experiment were chosen such that         
we could evaluate the behaviour of a simple detection         
method applied to our simulated data, so the presented         
results are not in direct correspondence to results that         
could be obtained with real TESS data. Moreover,        
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Fig 2. Distributions of correctly and incorrectly       
detected transits in simulated data for varying       
parameter values. The fraction of correct detections is        
given per bin. Results were obtained using a        
BLS-based detection method. For reference, a relative       
radius of 0.02 corresponds to a transit depth of about          
430 𝜇mag. The bottom figure shows the signal-to-noise        
ratio (SNR) distribution, where the SNR is calculated        
as the transit depth divided by the white-noise 𝜎. 

 
transit-less light curves were excluded in this       
experiment. When developing DL-based detection     
methods, transit-less light curves will be included to        
allow precision and recall to be measured and        
compared. For 81% of the samples (i.e. 4050 samples),         
both ​t​0 ​and ​P were correctly detected by the BLS-based          
detection method. Fig 2 and Fig 3 show that most          
errors were made for the smallest and longest-period        
planets, and for long duration transits. More transits        
could probably be detected using a larger number of         
candidate periods to search over, but the duration at         
which they can be detected is limited by the detrending          
method that is being used. The results are as expected,          
and show that our data are suitable for use in          
developing a new DL-based detection method. 
  

Further research: ​Ultimately, our goal is to detect        
currently unknown transit events in real TESS data. In         
particular, we aim to search for additional transits in         
systems with an already known transiting planet. This        
is because one may expect the orbital planes of planets          
around the same star to be oriented similarly, thus         

  
Fig 3. 2D plots of the detection results shown in Fig 2.  
 
increasing our chances of finding additional transits. It        
is known that this is not always the case, but we hope            
to support the investigation in when this claim holds.         
Also, finding additional planets in known planetary       
systems would be of great value for our understanding         
of planetary system architectures and dynamics.      
However, before we move towards real-world data, we        
plan to explore RNNs in the context of transit detection          
in simulated light curves. Possibly, their ability to learn         
complex temporal patterns will help in detecting the        
smallest planets with long periods, and long duration        
transits that are distorted by stellar or systematic noise. 
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