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Introduction:  Since the discovery of the first 

exoplanet more than 4,000 exoplanets have been found 

and many thousands of planetary candidates are yet to 

be confirmed. This rapid progress was possible thanks 

to several missions targeted on finding new exoplanets. 

In particular the Kepler/K2 mission which alone 

discovered over 2,600 exoplanets [1]. The TESS 

mission [2] continues its legacy and is believed to 

discover many more. 

The amount of collected data is already large and 

the rate at which new data becomes available is still 

increasing rapidly. This goes far beyond the capacities 

of manual inspection by human experts. The use of 

Artificial Intelligence (AI) methods, especially Deep 

Learning (DL), as an automated way of screening the 

data for potentially interesting planetary candidates, 

have lately gained great popularity and are already 

established as an essential tool for exoplanet detection. 

These techniques are powerful means for pattern 

recognition and their applicability for exoplanetary 

science is not limited to the detection of exoplanetary 

candidates. This work presents an approach to 

automatically characterize transit shapes of potential 

exoplanetary signals and to perform a temporal 

analysis of the variations in the transit shapes over 

multiple consecutive transits of the same target. We 

hope to find anomalies in the transit shapes that can 

hint at interesting astrophysical phenomena such as 

disintegrating planets, gravity darkening or other 

asymmetries in the transit shapes. Additionally, we 

will try to draw conclusions about the underlying 

stellar activity of the host star by monitoring short- and 

long-term variability in the appearance of the transit 

shapes of the same target. 

 

Data Preparation:  For our experiments we are 

using light curve data collected by the TESS mission. 

We focus on the subset of TESS objects of interest 

(TOIs). As our research focuses on transit shapes, we 

crop the data to keep only the relevant (in-transit) part 

of the light curve based on the estimates of the epoch, 

orbital period and transit duration of the light curve 

provided by the TESS pipeline [3]. 

We consider different levels of pre-processing. The 

raw flux, the pipeline corrected flux and the pipeline 

corrected flux after detrending was applied to the 

whole light curve. The trade-off to be made here is 

between removing systematic noise, due to 

instrumental mechanisms, and preserving all relevant 

true signals that can enhance the quality of the 

analysis. Providing our approach with multiple 

granularities of pre-processing enables our method to 

dynamically make this decision by itself. Additionally, 

we incorporate time information to include knowledge 

about the temporal distance between subsequent 

transits and data points.   

 

Method:  A popular DL approach for the detection 

of exoplanets are variants of Astronet [4]. It is based on 

a one-dimensional convolutional neural network 

(CNN) which applies several filters to the data that are 

learned via the stochastic gradient descent (SGD) 

optimization algorithm. These filters extract 

information relevant to achieve the training objective, 

which was in that case distinguishing planetary transits 

from false positives. 

  For the characterization of transit shapes, we use a 

similar CNN-based architecture. However, our 

approach differs substantially from that of Astronet, 

since we do not seek to differentiate real transits from 

false positives, but rather to extract information from 

the data that can be used to characterize the shape of a 

transit. We design an autoencoder (AE) architecture  

 

 

Figure 1: Sketch of the AE architecture. (Left) the encoder 

that encodes the shape of a transit into a latent space. (Right) 

the decoder that reconstructs the transit from the latent 

representation. The two numbers below the Conv layers 

represent the kernel size and number of filters respectively. 

For the Max(Un)Pool layer they represent the kernel size and 

the stride. Note that this is a simplified illustration which 

does not show all the convolutional blocks. 
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that is trained to first compress the data to a lower 

dimensional representation to subsequently reconstruct 

the original transit from this representation. This 

ensures that the model learns distinguishing features of 

the transit shape necessary to reconstruct the original 

data. An illustration of the shape model architecture 

can be seen in Figure 1. 

 The extracted feature representation will be used 

as input to our time series analysis model. For this we 

use Long Short-Term Memory networks (LSTMs). This 

method is suited for capturing trends in sequential data. 

It takes as input the data of the current time step as 

well as the output of the previous time step. An 

illustration of this architecture can be seen in Figure 2. 

 

Figure 2: Sketch of an LSTM architecture that gets the 

representation of N transit shapes as input. 

 

First Results and Discussion: The transit shape 

embedding learned by the shape model can be 

visualized by projecting the learned representations of 

the different transits to a two-dimensional manifold via 

dimensionality reduction methods like t-distributed 

Stochastic Neighbor Embeddings (t-SNE) [5]. The 

manifold created from a small subset of our data is 

shown in Figure 3.  

The figure shows that similar transit shapes from 

the same target are clustered in close proximity to each 

other in the manifold. This indicates that the model has 

learned to capture features well-suited to describe 

transit shapes. With those features one can find similar 

examples and distinguish different types of transit 

shapes from each other.  

By flagging certain known phenomena similar 

effects can be found for other targets, by retrieving the 

nearest neighbors in the embedding space. 

Additionally, new phenomena could be discovered by  

manually inspecting examples from clusters which are 

distant from flagged clusters and thereby cannot be 

attributed to any other known phenomena. 

The further development and experiments for the 

time series analysis are a work in progress but we hope 

to be able to track the stellar variability over time using 

our LSTM architecture. 

Figure 3: t-SNE manifold of transit shape embedding of 246 

targets (6100 transits) where each data point represents one 

transit (in grey). For five randomly selected targets all 

transits are plotted in a certain color. 

 

Future Work: A possible idea for enhancement is 

the incorporation of domain knowledge in the form of 

external stellar or planetary parameters such as surface 

temperature of the host star or the ratio of planetary 

and stellar radii. Additionally, the AE architecture 

could be extended to a Variational Autoencoder (VAE) 

[6] to ensure continuity of the latent space 

representation. 
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