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Introduction:  Volcanic flood basalt eruptions in 
Earth’s history have covered thousands of square kil-
ometers with basalt deposits up to kilometers thick [1].  
The massive size and extended duration (up to centu-
ries or millennia) result in enormous releases of cli-
mactically-relevant gas species such as SO2 and CO2 

[2].  Flood basalt eruptions on Earth such as the Siberi-
an and Deccan Traps are coincident with mass extinc-
tion events, although the casual linkages are still being 
studied [3, 4, 5].  Additionally, flood basalt eruptions 
seem to be a common feature of terrestrial planets in 
our Solar System [6, 7, 8, 9] and are hence plausible on 
terrestrial exoplanets.  Indeed, flood basalt eruptions 
may have made the ancient martian climate more hab-
itable [e.g., 10].     
     However, what is still unknown is precisely how 
flood basalt eruptions influence planetary climate via 
their eruption rates and cadence [2], height of the vol-
canic plumes [e.g., 1], and relative degassing abun-
dance of climactically-relevant species like SO2 [11, 
2]. Once eruptions occur, the complex interplay of 
photochemistry (e.g., turning SO2 into H2SO4 aero-
sols), greenhouse gas warming, changes to the atmos-
pheric circulation, and aerosol-cloud interactions can 
only be properly simulated with a comprehensive 
global climate model (GCM).   

Previous work on the terrestrial climate response to 
large volcanic eruptions has settled on the initiation of 
“volcanic winter”, a cooling response to the reduced 
surface insolation caused by a widespread blanket of 
H2SO4 aerosols in the upper troposphere and strato-
sphere [e.g., 12].  Smaller-scale eruptions produce 
more varied regional effects, but again, largely with 
cooler temperature anomalies at the surface [e.g., 13].  
However, these previous works have generally focused 
on single–short-duration explosive eruptions that inject 
material into the stratosphere.  This is in contrast to 
flood basalt eruptions, which have much longer dura-
tions and likely injected material at the surface, into 
the troposphere, and lower stratosphere.     
Methods:  Our ongoing work has simulated a short-
duration Columbia River Flood Basalt (CRB)-like 
eruption, a medium-scale flood basalt eruption that 
occurred ~15-16 Mya in eastern Washington state and 
Oregon.  While the CRB is not believed to have initiat-
ed an extinction event, it occurred in the midst of the 
Mid-Miocene climactic optimum [14] and there is 
some evidence of a coincident glaciation [e.g., 15].  
The CRB eruption occurred in a variety of phases, the 

largest produced the Grande Ronde Basalt Group.  
Following [1], we created an eruption scenario for the 
Goddard Chemistry Climate Model (GEOSCCM) [16] 
that emits SO2 in the atmospheric boundary layer con-
stantly and periodically (four times per year) an explo-
sive eruption that emits much more SO2 in the upper 
troposphere/lower stratosphere.  The eruption lasts for 
4 years, following minimum emplacement time of the 
Grande Ronde’s largest flow unit, the Wapshilla Ridge 
Member [2], and emits 30 Gt of SO2 in total.  This 
corresponds to approximately 1/10th of what was likely 
emitted during the Wapshilla Ridge eruption phase of 
the CRB [2].  Note that we have used a post-industrial 
atmosphere with 400 ppm of CO2 and an ocean with a 
modern continental configuration as our baseline, and 
simulations with a pre-industrial atmosphere are ongo-
ing.  Our simulations do not include SO2 as a radiative-
ly active species, however H2SO4 aerosols are radia-
tively active.   
      We additionally use a 1D radiative-convective 
model, Clima, to compare with the GCM results.   
Results:  The massive flux of SO2 into the atmosphere 
is quickly converted to H2SO4 aerosols.  Global area-
weighted mean visible band sulfate aerosol optical 
depth reaches 230 near the end of the eruption, compa-
rable to cumulonimbus clouds.  This reduces the sur-
face shortwave radiative flux by 85% and top-of-
atmosphere outgoing longwave flux by 70%.  Contrary 
to our expectations, we find that the climate warms 
during and immediately following the eruption after a 
very brief initial cooling.  Global mean surface tem-
perature peaks 3-4 years after the eruption ends with a 
+7 K anomaly relative to a baseline simulation without 
the eruption (Figure 1).  Post-eruption regional tem-
peratures, particularly near-equatorial continental are-
as, see drastic rises of summertime temperatures with 
monthly mean temperatures equaling or exceeding 
40°C, which are uninhabitable temperatures for mam-
mals [17].   
       These temperature responses are radiative- and 
circulation-driven.  The eruption warms and raises the 
tropical tropopause, allowing a massive flux of water 
vapor into the stratosphere.  Stratospheric water vapor, 
usually ~3 parts per million reaches 1-2 parts per thou-
sand (Figure 2).  This increase results in increased 
thermal infrared flux from the stratosphere, which 
cools that portion of the atmosphere while also warm-
ing the surface and troposphere.  Such a water flux into 
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the stratosphere may have implications for historic 
water loss on planets such as Mars and Venus.    
     Additionally, much of the stratospheric ozone layer 
is removed, with global column-integrated ozone 
abundances dropping to 50-100 Dobson units, lower 
than the modern Antarctic ozone hole.   

Despite the massive perturbation to the climate dur-
ing the four-year eruption, the climate quickly ap-
proaches pre-eruption normal.  We find that after seven 
years post-eruption: (1) H2SO4 aerosols are nearly ab-
sent, (2) surface radiative fluxes are near normal, and 
(3) global temperatures are cooling toward normal 
levels.  However, the stratospheric water vapor more 
slowly returns to pre-eruption levels and remains more 
than one order of magnitude higher than pre-eruption 
levels after seven years post-eruption.  
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Figure 1.  Post-eruption global area-weighted surface 
air temperature over the simulation (solid line) com-
pared to a baseline simulation (dashed line). 
 
 

 
Figure 2.  Post-eruption global area-weighted specific 
humidity vertical profile (solid line) compared to a 
baseline simulation (dashed line). 
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