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Introduction: The Bagnold dune field is located in 

Gale crater and has been intensively studied with orbital 

and rover data [e.g. 1-3]. A large diversity of aeolian 

bedforms is present in the region, scattered over bedrock 

or covering dark barcanoid and linear dunes: 1) 

centimeter-scale ripples observed by the MSL rover [3]; 

2)  meter-scale ripples that cover dunes and sand sheets; 

and 3) transverse aeolian ridges (TARs) which are also 

present in interdune areas. Surface wind measurements, 

climate models as well as geomorphologic evidences 

suggest a bimodal wind regime, with winds blowing 

from ~NW to ~NE [1, 2, 3].   

It has been recognized that the geometry and 

dynamic behavior of Martian large ripples is not 

uniform [5], in some cases mimicking the motion of 

dunes [6]. A major distinction has been made between 

sinuous ripples (three dimensional bedforms with 

transverse or oblique migrations [6]) and straight/linear 

sets of bedforms (two dimensional bedforms that 

display transverse or longitudinal migration [5,6]). The 

mechanism/s responsible for this diversity, which has 

no parallel in terrestrial aeolian environments, are still 

debated [3, 7]. Therefore, we aim to provide more robust 

mapping of ripple distributions, trying to relate pattern 

differences with particular local/dune settings. This 

work seeks to integrate pattern attributes in order to map 

and characterize the different sets of meter-scale 

bedforms that are present in the Bagnold dune field (Fig. 

1).  

Data and methodology: HiRISE topography and 

orthoimages were used to map the ripple traces 

automatically using the Object-Based Ripple Analysis 

method described in [8]. COSI-Corr software was used 

to derive migration trends and rates (we followed the 

same approach described in [1, 5]).  

Like in [6], the computed pattern properties were 

summarized and integrated into a data grid with 10 m 

spacing (Fig. 1b-e). This final database includes pattern 

geometric properties (e.g., wavelength, length, trend) 

morphometric parameters (e.g., dune elevation, slope 

angles) and COSI-Corr displacement data. This dataset 

is used to perform a supervised object-based 

classification of the bedforms with a neural network 

classifier. The topology of the trained network includes 

76 input vectors and one hidden layer. Four training 

classes were mapped in QGIS, corresponding to ~10% 

of the total grid points.  

Fig. 1 – a) Overview of the Bagnold dune field. b) HiRISE 

close view. c) bedform traces mapped automatically using 

the Object-Based Ripple Analysis (OBRA) method [8]. d) 

COSI-Corr displacements (the spacing between each data 

point is 10 m). e) Modal trend of the bedforms and circular 

standard deviation computed from the mapped features. 
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Results and Discussion: Fig. 2a shows the results 

of the classification procedure. We obtained a 

classification overall accuracy of 94% (kappa index of 

0.9), which demonstrate the high efficiency of the 

adopted approach to map and discriminate meter-scale 

bedform populations.   

The mapped Type I bedforms have higher albedos 

and wavelengths, presenting linear or sinuous/complex 

crest lines (Fig. 2b; red). Their distribution is not 

uniform, appearing in interdune areas and forming two 

large corridors bordering the dune field. For the covered 

time span (5.7 Earth years) we found that these 

bedforms do not migrate. All these attributes are 

consistent with TARs characteristics. 

Type II bedforms form three dimensional sinuous 

patterns and are typically located in the edge or in the 

lower flanks of dunes (Fig. 2c,d; green). Laterally they 

transition to Type III bedforms, which are also three 

dimensional but have slightly lower wavelengths (Fig. 

2c,d; blue). Type II pattern is also more regular, 

displaying lower circular standard deviations than Type 

III bedforms. Type II patterns may be consistent with 

the coarse-grained ripples described at the base of High 

and Namib dunes [2]. 

Type III seems to correspond to the “square” or 

“cross-hatch” pattern described by [9] and [2] 

respectively, although we notice a considerable degree 

of pattern variability associated with this class. This is 

the most abundant pattern, corresponding to 56% of the 

mapped area. This class matches the large sinuous and 

asymmetric ripples that cover the highest sections of 

High and Namib dunes [2]. The complexity of this 

pattern suggests that it results from the integration and 

reworking of different winds.  

Type IV class correspond to straight two 

dimensional bedforms preferentially located in the 

higher sections of the linear dunes, where they present 

the highest migration rates and display longitudinal 

migration trends [5] (Fig. 1d,e and Fig. 2e; cyan).  

Transverse or oblique migration trends are also present 

to a lesser extent. Similar bedforms also appear in the 

lee side of obstacles, such as TARs (Fig. 2e), bedrock 

ridges (Fig. 2d) or associated with dune horns [2]. These 

characteristics suggest local bimodal winds with high 

divergence angles and ratios close to the unity [10].  

Conclusion: We demonstrate that large scale 

studies using machine learning techniques can be used 

to map meter-scale bedforms and identify different sets 

of bedforms. We mapped 4 different patterns and related 

them with bedforms studied in situ by the Curiosity 

rover. Here we present a qualitative characterization of 

each class of bedform, which will be complemented by 

a quantitative analysis, similar to what was done for 

Hershel crater [6]. This diversity across a relatively 

small area, demonstrates the complexity of boundary 

conditions influencing the Bagnold dune field.  
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Fig. 2 – a) Classification results for a section of Bagnold 

dune field. b) Example of Type I bedforms (10 m is the 

spacing of the point grid). c) Detail of Type II bedforms. 

d) Type III bedforms. e) Example of two-dimensional 

Type IV bedforms.  
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