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Introduction: The gabbroic Martian shergottite 

meteorites Northwest Africa (NWA) 10761, NWA 

11300 & NWA 12323 are dominated by large pyroxene 

crystals up to 7 mm, with interstitial plagioclase and 

maskelynite. Unlike most of their finer-grained 

counterparts, these gabbroic samples exhibit prismatic 

pyroxenes that retain regular, commonly concentric, 

zonation of Ca, Fe and Mg (see Fig 1; 2), and the 

plagioclase component retains a lath-like structure 

despite conversion to maskelynite.    

The three gabbroic shergottites studied here are 

geochemically similar, representing plutonic examples 

with intermediate incompatible trace element signatures 

[e.g. 1, 2]. Sulfur isotope compositions are consistent 

with the possibility that these stones may be launch-

paired [3].  Large-area optical microscopy data are 

already available for these samples [1], highlighting 

shock veins and the mineral zonation previously 

described, but a detailed mineralogy has yet to be 

provided.  

In this study we investigated the mineralogy of these 

three stones using a combined analytical microscopy, 

employing large-area backscattered electron imaging 

(BSE) coupled with X-ray element mapping performed 

within a standard, laboratory-based scanning electron 

microscope (SEM-EDS). In addition, we used X-ray 

fluorescence microscopy (XFM) utilizing a synchrotron 

source. The addition of this synchrotron-XFM allowed 

for non-destructive trace element detection within each 

sample, which cannot be reliably resolved using SEM-

EDS methods alone.  

Samples & Methods: Three polished thin sections 

were provided from the UWB collection; NWA 10761, 

NWA 12323, and NWA 11300, which were carbon-

coated prior to analysis. Large-area, whole sample BSE 

images were generated using a JEOL 7001F FE-SEM 

within Plymouth Electron Microscopy Centre, using an 

accelerating voltage of 20 kV and an Oxford 

Instruments X-Max 50 mm2 EDS detector.  

XFM was conducted at the ANSTO Australian 

Synchrotron in Melbourne, Australia, on their XFM 

beamline. The beamline uses a KB mirror for the 

microprobe setup with an energy range of 4.1-20 kV, 

and a MAIA RevC detector (220 eV energy resolution). 

As whole-section data were required for each meteorite, 

we utilized a 2 µm spot for the duration of this 

experiment and the maps were run overnight, ~8 hours 

each. Shorter orientation scans were run prior to this to 

ensure the whole sample was captured, but this data is 

not used here.  

Large-scale Analytical Microscopy: Large-area 

mapping of meteorite thin sections via SEM-EDS has 

long been used to estimate relative modal analyses via 

pixel-counting, compared to more traditional point-

counting methods [4]. Whilst this method has proven 

useful for accurate modal proportions of major phases 

within thin sections, the precision of SEM-EDS data for 

trace element determination, or low-concentration 

phases is less well-defined owing to an overlap between 

pixel resolution at the large scale (typically 1-2 µm) and 

accessory mineral grain size [5]. Although laboratory-

based X-ray techniques can reach the required 

resolution, the time required to map whole thin-sections 

at this scale can be prohibitive.  

 
Figure 1 – SEM-EDS maps (FOV = ~20 mm) of NWA 

12323; backscattered-electron (BSE) image (top) and 

combined X-ray element maps (bottom), where red = 

Mg; green = Ca; blue = Fe, yellow = S; turquoise = Ti.  
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X-ray element mapping via SEM-EDS; composite 

element maps of each shergottite highlights the mineral 

assemblage composed of zoned pyroxene (pink, high-

Mg), plagioclase feldspar-maskelynite (dark blue), 

phosphates apatite & merrillite (green), ilmenite & 

ulvöspinel (light blue), pyrrhotite (white). A glassy 

shock vein can be seen in NWA 12323, cross-cutting the 

center of the thin-section (dashed line, Fig.1), as well as 

carbonate veins (dark green), which are likely terrestrial 

contamination. 

 
Figure 2 - XFM maps (FOV = 15 mm) of NWA 11300; 

Ca (top) and Fe (bottom) concentrations presented as 

heat maps, with red-white coloring representing high 

concentration, black-blue indicating low concentration.  

X-ray element mapping via XFM; X-ray element 

mapping of the major phases (pyroxene and feldspar) 

via XFM within the gabbroic shergottites give a more 

precise view of the zoning observed within the large, 

prismatic crystals. In NWA 11300, pyroxenes appear to 

have both Ca-rich and Ca-poor cores, indicating that 

both ortho- and clinopyroxenes are present (see figure 

2), which has been investigated using EBSD. The 

converse relationship expected for Mg is not observable 

within XFM data owing to Mg’s low X-ray energy (Kɑ 

= 1.254 keV), however, Fe concentration in pyroxene 

zonation is observed, with concentrations around the 

Ca-rich rims (figure 2, insert). Furthermore, XFM 

mapping reveals a significant distribution of minor 

phases at and just below the sample surface, including 

Ti and Cr (see figure 3), signifying further oxide phases 

not previously described using SEM-EDS. 

 
Figure 3 – XFM maps (FOV = 10 mm) of NWA 10761; 

concentration of both Ti and Cr (top) are easily 

distinguished in XFM data, representing a depth of 

material within the thin sections, not determined using 

SEM-EDS coupled with BSE imaging. Chromite has 

not previously been described within this specimen. 

Conclusions: These three thin-sections were used to 

initially classify the meteorites, and our new data 

augment those given in the published classifications [6]. 

XFM provides large-area mapping at higher energies 

than SEM-EDS, and a more defined interaction volume; 

this improved resolution can reduce analytical time and 

increase precision at which minor and trace elements 

can be measured within the near-surface of samples. 

The increased resolution in this work has identified a 

greater number of accessory phases than initial 

observations recorded, including various sulfides, 

chromite, and baddeleyite. A full modal analysis and 

petrological description will be provided at the meeting. 
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