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Figure 1. Retreating scarps. a) A retreating scarp in Gale crater near the Cumberland drill location where samples from the Mars Science Labora-
tory rover led to an estimated exposure age of ~78 Ma. Scarp retreat has been attributed in part to aeolian erosion by northeasterly winds (red 
arrow). b) A retreating scarp in Jezero crater defining the margin of the volcanic floor unit. Scalloping along the edge of the scarp has been inter-
preted as a proto-yardang texture from southwesterly winds (red arrow). c) Example of automated scarp detection and mapping (yellow line). 
Figures and caption (a and b) taken from Williams et al. 2020. 
 

Introduction: In the absence of liquid water on 
Mars, surface erosion is driven by abrasion of wind en-
trained sand and dust on exposed surfaces [1].  This eo-
lian dominated erosion regime produces most of the sig-
natures useful for interpretation of formative geo-
morphic processes.  

Aeolian erosion has been cited as a likely driving 
mechanism for removing massive amounts of sediment 

across Mars [2], an interpretation based primarily on ir-
regularly distributed large kilometer-scale features. 
However, decameter (hundred-meter) and finer-scale 
aeolian erosional features, which are more evenly dis-
tributed across the martian surface, may be more appro-
priate to use for estimating erosion rates and volumes. 
Knowledge of these erosion rates could significantly re-
fine and improve the precision with which we interpret 
aeolian erosion on Mars.  
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Scarps form meter-scale topographic steps at many 
localities on Mars and have been suggested to evolve 
through a combination of aeolian erosion (Fig. 1). Here 
we focus on scarp formation produced by aeolian ero-
sion. Aeolian dominated scarps, which typically have 
erosion-resistant cap rock units overlying less resistant 
units, are eroded by undercutting from aeolian abrasion 
[3,4].  

While extremely common on Mars [5,6], thorough 
studies of erosional scarps distribution and characteris-
tics have been primarily confined to rover mission loca-
tions [3,4,7]. An extensive global dataset of intermedi-
ate scale martian scarps, including morphometric 
(height, headwall, slope angle, etc.) and spatial (loca-
tion, orientation clustering, etc.) information, does not 
currently exist. Traditional time-intensive hand vectori-
zation and classification approaches to scarp delineation 
have made it difficult to build such databases. Automa-
tion of scarp detection on Mars would be extremely use-
ful in building such a database and in identifying loca-
tions where future rover and manned mission might 
sample for recently exposed organic material. 
 

Computer Automation: The Artificial Neural Net-
work (ANN) is loosely defined as computing algorithms 
designed to, in some ways, mimic biological neural net-
works seen in animal brains [8]. The large volume of 
high-resolution orbitally derived images on the Earth, 
Mars and other planetary bodies has sparked the devel-
opment of automated approaches of landform identifi-
cation, of which, Convolutional Neural Networks 
(CNNs) are at the forefront [9]. To date, martian CNN 
studies have typically focused on impact craters, Vol-
canic Rootless Cones (VRCs) and Transverse Aeolian 
Ridges (TARs) [10-14]. Automated detection of scarps 
on Mars using CNN’s has yet to be attempted.  

 Due to the sheer number of scarps on the martian sur-
face, the process of manually creating a scarp database 
would require resources and time beyond that which is 
readily, and realistically, available. As an alternative to 
manual extraction, and to allow successfully capture of 
scarps and their associated complex morphologies, in 
our approach we have created a python-based machine 
learning algorithm that is capable of identifying and cat-
egorizing scarps by utilizing HiRISE high- resolution 
imagery and, where available, DEMs derived from 
HiRISE stereo pairs.   
 

Conclusions: Automatic scarp detection will quickly 
give a global picture of where scarps have formed on 
Mars. Identifying scarp orientations could help us better 
understand of general orientation variability on a global 
scale. Developing a large database of scarp distribu-
tions, locations, orientations, elevations and associated 

Figure 3. Scarp Detection and Extraction Tool flow chart and gen-
eral tool logic. User input (Orange); Python based tool (green); 
ML end member tool logic (purple); Tool products (red); Data-
base (Blue); Extracted data (white). The following is a two-part py-
thon-based tool designed by this study that requires one of two stere-
opair and the associated DEM product. This script, after user 1) de-
fines file location of one of the stereo pair HiRISE images will 2) con-
vert image to greyscale, then 3) convert to binary, 4) and process for 
edge detection. The now preprocessed HiRISE image will automati-
cally 5) run through the CNN deep learning algorithm with prebuilt 
scarp image database, that 6) if scarps are identified [TRUE], then will 
continue to step (8); if 7) no scarps are identified [FALSE] then the 
script prompts user stating “no scarps identified” and ends the pro-
gram (continue to step 1). (8) filter mask of scarp areas generated and 
9) applied to DEM layer. The second portion of the python-based 
script will open a 10) user interface window allowing user to defined 
workspace, load clipped DEM location; define range and threshold 
values. Then when script is continued will 11) apply slope to DEM to 
create the 12) clipped DEM slope product; followed by 13) applica-
tion of range filter to create 14) slope range product; then 15) thresh-
old values are applied to extract high values to create the 16) Clipped 
DEM Slope product. Next, the 17) Conversion pixels to polygon tool 
applied to create 18) scarp polygons product; then the 19) Polygons to 
Polylines tool creates the 20) scarp polyline product. 21) Scarp orien-
tation, distribution and where applicable morphology data is created 
and added to the 22) scarp database. 
 
morphologies will be a valuable contribution by allow-
ing a better understanding of the formative processes of 
erosional scarps on local to global scales.  
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