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Introduction:  Recently, more and more planetary 

surface images are obtained. To process and analyze 

them efficiently, automatic data processing  is im-

portant. Application of machine learning techniques 

will be one of the solutions. 

In this study, we focused on making geological 

map of the Moon by using a machine learning tech-

nique. Geological maps are used for i.e. understanding 

evolution of lunar surface, investigating subsurface 

composition and structures, and selecting landing site. 

Geologic maps are integration of multiple thematic 

maps such as a map of surface compositional features 

and tectonic structures etc. We applied a machine 

learning technique to make a thematic map containing 

rayed craters, rilles and ridges. 

Data:  Visible and near-infrared images obtained 

by Terrain Camera (TC) and Multiband Imagers (MI) 

were employed. TC and MI were onboard SELENE. 

Spatial resolution of TC and MI images are ~10 m/pix 

[1] and ~20 ~60 m/pix [2], respectively. Additionally, 

we used topography data, Digital Terrain Model 

(DTM) calculated from TC images [1], were employed. 

Spatial resolution of DTM is ~10 m/pix. TC observed 

lunar surface with visible range. MI observed lunar 

surface in 9 different channels whose wavelength 

range from 415 to 1055 nm. These images are advan-

tageous to perform global survey in same quality, be-

cause they cover the entire lunar surface in same reso-

lution and same solar condition. 

Study area and Method: The region of south Si-

nus Medii (3x3 degrees in size) was chosen for the 

training, validating, and testing fields (Figure 1). The 

area is located on the nearside mare covered by basalts. 

A several grabens, sinuous rilles, mare ridges, and nu-

merous craters are observed. Bright green and bright 

blue circles appeared in the figure, are rayed craters. 

The bright plain surrounding rayed craters are their 

ejecta. The horizontal extents of ejecta vary depending 

on the craters; some have elliptical shape, and some 

have radial pattern. 

We implemented mostly after the semantic seg-

mentation architecture, called Efficient Neural Net-

work (Enet) [3], but we employed different activation 

function called Funnel Activation (FReLU) [4] instead 

of PReLU. ENet is a deep neural network architecture 

for semantic segmentation. It requires low real time 

inference in comparison to other deep neutral networks. 

FReLU is capable of considering 2D spatial condition. 

By using FReLU, higher detection capability of linear 

features is expected. 

We made two kind of composite images as for the 

training, validation, and test data. One is made of TC 

and MI images (Image Type A; Figures 1, 2a, 3a) and 

the other is made of DTM and MI images (Image Type 

B).  

Figure 1: Composed image (Image Type A) of 

south of Sinus Medii. Yellow, pink and green 

squares show the regions for training, test and 

validation, respectively. 
 

Figure 2: (a) close up image of Image Type A (dis-

played color range is different from Figure 1), and (b) 

TC image with manually labeled craters (yellow cir-

cles) and faults (brown solid lines).  
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The lunar surface spectral features vary due to the 

difference in composition and amount of space weath-

ering. Ejecta exposed by rayed craters are not space 

weathered, thus they show different spectral features 

from the surrounding area. Also young craters have 

sharper topographic features than old ones. According-

ly, visible and near-infrared images and topography 

information make it easier to recognize rayed craters. 

Image Type A is a composed of TC image as red, 

MI band ratio image of 749 nm/1001 nm as green, MI 

band ratio image of 414 nm/749 nm as blue. Image 

Type B is a composed image of slope map (calculated 

from DTM) as red, MI band ratio image of 749 

nm/1001 nm as green, MI band ratio image of 414 

nm/749 nm as blue. 

In advance, to adjust the spatial resolution gap be-

tween TC and MI images, MI images were artificially 

interpolated and set to the resolution of 10 m/pix by 

nearest neighbor. 

We also manually prepared labeled images that 

have three classes, “rayed craters”, “fault”, and “oth-

ers” (Figure 2). There are more than ~2000 craters 

larger than 100 m in diameter in the study area. Several 

rilles and ridges are distributed. 

The composite and labeled images were divided in-

to 576 pieces, 512x512 pixels size each. Among them 

504 images were used for training. 48 images were 

used for validation, and 24 images were used to test 

and evaluate trained models. We set the batch size of 

14. We continued learning until epoch number of 2000, 

then we adopted the best model among them. We used 

Intersection over Union (IoU) metric to evaluate 

trained models. 

Results: Rayed craters (being larger than ~70 m 

and smaller than ~1 km in diameter) predicted by the 

trained model meet good agreement with the manually 

extracted craters (Figure 3). Some clear rilles were 

extracted very well, but other ambiguous rilles and 

ridges were not well extracted. 

The trained model applied to Mare Imbrium region 

(Figure 4). As you can see in the figure, rayed craters 

are well detected and ridges are partially detected. 

 

Discussion and Conclusion: The reason why 

small craters (D<~70 m) were not extracted well is 

explained by the spatial resolution. Their dimeters are 

close to detection limit, because spatial resolution of 

MI image is ~60 m/pix.  

Low detection capability of large craters (D>~1 

km) and fault features would be explained by lack of 

supervised images. There were only ~10 rayed craters 

larger than 1 km. We consider that the small training 

data set for fault features result in those low detection. 

We expected by using topography information would 

be resolve this problem, but dataset of Image Type B 

did not improve detection ability. The extractions of 

those features are remained for future work. 
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Figure 3: Example showing (a) input image (Image 

Type A), (b) manually labeled image (craters as yellow), 

and (c) predicted image (craters as green) by the optimal 

trained model. 

Figure 4: Part of Mare Imbrium region. (a) input 

image (Image Type A) and (b) TC image with pre-

dicted craters (pink) and faults (blue). 
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