NEW IMPACT CRATERS ON MARS SINCE THE LANDING OF THE INSIGHT MISSION. K. Miljković¹, I. J. Daubar², A. Rajsic¹, T. Neidhart¹, E. K. Sansom¹, G. S. Collins³, N. Wojcicka³, N. A. Teanby⁴, M. E. Banks⁵, L. Posiolova⁶, M. Malin⁶, ¹Curtin University, School of Earth and Planetary Science, Perth, Australia (katarina.miljkovic@curtin.edu.au), ²Brown University, Providence, RI, USA, ³Imperial College London, UK, ⁴Bristol University, UK, ⁵NASA Goddard Space Flight Center, USA, ⁶MSSS, San Diego, CA, USA. Introduction: NASA's InSight mission has been operating on Mars for over 2 years [1]. In the first year of operations, the seismometer SEIS (Seismic Experiment for Interior Structure) recorded hundreds of quakes [2]. The number of recorded quakes is increasing on a daily basis. However, none of the seismic events has been confidently identified to have originated from an impact event to date. One impact event created a 1.5 m diameter crater about 37 km from the InSight lander (light blue marker in Figure 1, HiRISE image ESP_060062_1840). It was close to the detectability limit but could not definitively be linked to any of the three isolated seismic signatures that occurred in the possible time period of the impact [3]. Explanations as to why there have not yet been any impacts confidently identified by SEIS could be: a) unfavorable impact bombardment statistics in terms of their size and distance from InSight, b) the uppermost crust on Mars could be more dissipative towards seismic waves than previously thought [3], and/or c) the coupling between the impact energy and seismic generation is different on Mars than observed on the Moon [4-5, also see 6-7 at this conference]. Point (c) includes issues associated with impactor drag, ablation and fragmentation in the atmosphere that create different impact mechanics on Mars compared to the Moon. Points (b) and (c) could have caused lower seismic efficiencies than originally estimated [8-10], which lowers the detectability and reduces the surface area surrounding InSight over which impacts can be detected. In this work, we discuss impact events that the Mars Reconnaissance Orbiter's HiRISE and CTX imaging teams have identified to have occurred on Mars since InSight's landing and why those were not detected by the seismometer on InSight. Methods: All new impacts discussed here are available in the public HiRISE catalogue (https://www.uahirise.org/). The images were investigated in the HiView software package. Each crater was classified as a single or cluster of craters. The largest crater diameter was measured and, in the case of clusters, the approximate number of individual craters per cluster. The reason to measure the largest crater in a cluster is because the seismic signature of crater clusters is dominated by the largest crater in the cluster at large epicentral distances [11]. **Analysis** of the impact craters is shown in Figure 1 and Table 1. About 50% of the observed craters were likely single impacts (blue circles, Figure 1) and the other 50% were evidently cluster craters (grey squares) with less than 40 individual craters in the largest cluster. The largest single crater was ~14 m in diameter, and the largest crater in a cluster was ~13 m. The smallest resolvable crater was 1 m (pixel scale of the HiRISE data is about 20-30 cm/px). Except for the only impact that had a possibility of being detected by SEIS (1.5 m at 37 km distance, marked by light blue circle in Figure 1 and analysed by [3]), all other impacts occurred at 3000 to 8400 km distance from the InSight lander. The time window between the CTX images before and after the impacts was as little as 1-2 months, up to as long as 17 months. The longer the time window, the harder it is to interrogate the seismic data for an impact event. Figure 1: New impact craters as detected by the CTX and HiRISE to have occurred since the InSight landing, showing their crater diameter (x axis) and distance (y axis) from InSight. The black [9-10] and grey lines [4] show the estimated detection thresholds, for the lownoise (night time [12]) observations on Mars. Figure 1 shows the crater diameter (or the largest crater in the case of a cluster of craters) on the x axis and the location of new craters expressed as distance from the InSight lander on the y axis. Figure 1 summarizes the impact detection threshold on Mars (here showing the case for the low ambient noise (at night time) on Mars [12]). Impacts could be identified in the seismic data if the impact crater size and distance from InSight falls below the black or grey lines. The black line is the scaling calculated before InSight landing [9-10] and the grey line is the recently updated detectability from numerical impact modelling [4]. The light blue marker is the impact crater that occurred close to the InSight lander (within ~37 km) and was borderline detectable [3-4]. All other impact events that have occurred on Mars post landing of InSight have so far been much further away from SEIS; They are one to two orders of magnitude too distant to be detectable. Conclusions: None of the dozen known new impacts were detected by InSight because they occurred much too far away, consistent with detectability threshold estimates. Only one small crater as reported in [3] could have been recorded since the InSight landing. Because orbital imaging is limited in space and time, these known new impacts represent only a fraction of the total number of impacts that have occurred on Mars in the last ~2 years. Based on previously observed bombardment rates [13], more than two hundred impacts >4 m in diameter occur on Mars each year. Extending that down to the smallest possibly detectable craters, [9] predicts ~3000 new craters >1 m in diameter have formed on Mars since InSight landed. If any of these unobserved impacts have been large enough and close enough to InSight to detect seismically, we have not yet discerned them in the seismic data. **Acknowledgments:** KM, AR, and TN are supported by the Australian Research Council (DP180100661, DE180100584). References: [1] Banerdt, W.B. et al. (2020) Nature Geosci. 13, 183-189. [2] Giardini, D. et al. (2020) Nature Geosci. 13, 205-212. [3] Daubar, I.J. et al. (2020) J. Geophys. Res. Planets, 125: e2020JE006382. [4] Wójcicka, N. et al. (2020) J. Geophys. Res. Planets, 125, e2020JE006540. [5] Rajšić et al. (2021) J. Geophys. Res. Planets, in review [6] Wójcicka, N. et al. (2021) LPSC, this issue. [7] Rajšić et al. (2021) LPSC, this issue. [8] Daubar, I.J. et al. (2018) Space Sci. Rev. 214, 132, 68 pp. [9] Teanby, N.A. & Wookey, J. (2011) PEPI 186, 70-80. [10] Teanby, N.A. et al. (2015) Icarus 256, 46-62. [11] Schmerr N.C. et al. (2019) J. Geophys. Res: Planets, 124, 3063-3081. [12] Lognonné, P. et al. (2020) Nature Geosci. 13, 213-220. [13] Daubar et al. (2013) Icarus 225, 506-516. Table 1. Impact craters observed by Mars Reconnaissance orbiter, CTX and HiRISE, including our analysis of the impact type; the crater diameter, or the largest crater diameter in case of a cluster of craters; the time window in which the impact occurred according to CTX before and after images, and the distance from the InSight lander. | HiRISE
observa-
tion ID | Lat | Lon (E) | Before image ID (CTX) | After image ID (CTX) | Time
window
(months) | Distance
from
InSight
(km) | Largest
crater
diameter
(m) | Impact
type | |--------------------------------|----------|----------|--|---|----------------------------|-------------------------------------|--------------------------------------|----------------| | ESP_0594
53_1335 | -46.2097 | 208.6446 | K12_058174_1341_XI_45
S151W 181224 | K15_059242_1334_XN_4
6S151W 190317 | 3.0 | 4,832 | 7.2 | single | | ESP_0597
28_1740 | -5.8284 | 254.8211 | K12_058238_1746_XI_05
S105W_181229 | K14_059016_1745_XN_0
5S105W_190228 | 2.1 | 7,066 | 5.5 | cluster | | ESP_0603
04_2135 | 33.3656 | 4.7771 | K13_058392_2112_XN_3
1N354W_190110 | K16_059737_2159_XI_35
N355W_190425 | 3.0 | 7,104 | 13.7 | single | | ESP_0618
59_1785 | -1.4930 | 41.1851 | K15_059182_1792_XI_00
S318W_190312 | K17_060171_1792_XI_00
S318W 190529 | 2.0 | 5,593 | 1.7 | single | | ESP_0634
33_2075 | 27.4086 | 261.1571 | K20_061165_2077_XI_27
N098W_190814 | K22_061864_2077_XI_27
N098W_191007 | 2.0 | 7,014 | 4.3 | single | | ESP_0639
30_2125 | 32.193 | 11.766 | K21_061583_2122_XN_3
2N348W_190916 | N01_062862_2121_XN_3
2N348W_191224 | 3.0 | 6,824 | 5 | cluster | | ESP_0639
53 2275 | 47.392 | 101.868 | K19_060696_2263_XI_46
N257W_190708 | N04_063742_2260_XN_4
6N257W_200302 | 8.1 | 3,062 | 1.4 | single | | ESP_0648
80 1920 | 12.0638 | 359.1007 | K13_058366_1892_XI_09
N000W_190108 | K18_060212_1941_XN_1
4N001W_190601 | 5.0 | 7,910 | 2.8 | cluster | | ESP_0653 | 0.52 | 202.27 | K19_060653_1834_XN_0
3N158W_190705 | N03_063554_1791_XI_00 | 7.2 | 3,945 | 6.3 | cluster | | 87_1805
ESP_0658
43_1775 | -2.72 | 354.86 | K19_060898_1775_XN_0
2S005W_190724 | S157W_200216
N02_063021_1778_XN_0
2S005W_200106 | 6.1 | 8,330 | 13.2 | cluster | | ESP_0661
76_1790 | -1.08 | 267.03 | N06_064712_1801_XN_0
0N093W_200516 | N08_065345_1801_XN_0
0N093W_200705 | 2.0 | 7,771 | 2.7 | cluster | | ESP_0665 | -49.75 | 119.7 | K16_059720_1299_X
N 50S240W 190423 | N10_066208_1305_X | 17.3 | 3,312 | 4.7 | single | | 51_1300
ESP_0600
62_1840 | 3.866 | 135.613 | N_308240 W_190423
K14_068929_1845_X
N_04N224W_190221 | I_49S240W_200910
K16_059495_1829_X
N_02N224W_190406 | 1.5 | 37 | 1.5 | single |