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Introduction: NASA’s Stardust mission successfully re-
turned cometary and interstellar dust collectors to Earth in
2006, after an encounter with the comet 81P/Wild 2 in 2004,
and exposure of the secondary collector to the interstellar dust
stream in 2000 and 2002.

Aluminum foils lining these collectors also preserved im-
pinging dust particles as impact residues within small craters,
typically with diameter < 1 µm in the case of foils from the
interstellar collector [1]. These craters are sparsely distributed,
only detectable by scanning electron microscope (SEM) imag-
ing, and can be easily confused with imperfections in the foil,
which makes the task of locating them nontrivial.

Previous successful attempts at automatic crater identi-
fication include a normalized cross-correlation and template
matching algorithm [2] and an algorithm based on a circular
Hough transform and Canny edge detection [3]. Convolu-
tional neural networks (CNNs), which have been established
as effective tools in image classification [4], have the oppor-
tunity to complement or outperform these previously devel-
oped machine learning techniques. This is because, unlike the
previously applied methods, CNNs can be trained on craters
in combination with other features, like scratches and image
exposure, and can integrate those observations into the final
metric. (See Fig. 1).

Another approach to finding craters, based on engaging
human volunteers to locate craters on the Stardust foils, is the
website Stardust@Home (hereafter SAH) [5]. SAH has been
particularly successful with identification of particle capture
tracks in aerogel cells from the Stardust interstellar collector,
attracting more than 30,000 citizen scientist volunteers, but a
similar level of interest for investigating the interstellar foils
has not emerged. CNNs may supplement manual searches like
the SAH website, leading to more efficient and effective use
of the labor of scientists and volunteers.

Image Creation: The images used to train the network
were taken from interstellar foils I1009N and I1126N. Due
to the small number of actual craters that have thus far been
observed in the SEM images of these foils, this project would
be impossible without analog craters produced by alternative
means, namely light gas gun shots of aluminum foils. Forty
four such craters had originally been imaged for use by [6],
and had previously been used by [2]. We produced a further 53
analog craters with the two-stage light gas gun (LGG) in the
Centre for Astrophysics and Planetary Sciences at the Univer-
sity of Kent using the procedure described in [7]. A training
set of 20,000 crater images was generated from these "seed"
craters by standard data augmentation techniques in the field
of deep learning and computer vision, known collectively as
data warping [8]. This process involved isolating the craters

Figure 1: Each layer of the CNN contains many different
convolutional filters, each with a different application. Some
“light up” on crater-like features (top), others on scratches in
the background (bottom). In this way, a CNN can account for
the relationship between a crater-like object and its environ-
ment to better determine whether or not it truly is a crater.

from SEM images, creating multiple versions of each crater
by altering the aspect ratio, re-scaling, and rotating, and finally
re-combining with a "blank" foil SEM image. Examples of
images produced in this way can be seen in Fig. 2.

Neural Network Architecture and Training: We pro-
grammed the CNN in Keras with a Tensorflow backend using
Python. The CNN had a total of 216,465 trainable param-
eters, 8 two-dimensional convolutional layers and 7 densely
connected layers. All hidden layers are immediately followed
by the ReLU activation function, while the output layer is
equipped with a sigmoid activation function. We used dropout
and ridge-regression L2-loss to prevent overfitting.

The images in the SAH site consist of 384 × 512 pixel
grayscale images, but it is computationally costly to train on
images of that size. To alleviate this cost, we allowed our
network to accept a variable-size grayscale input, and trained
in multiple steps. In the first step, we trained on up to 20,000
synthetic 150 × 150 pixel grayscale images (10,000 each for
images with and without craters). In the second step, we
retrained the network, starting from the previously obtained
weights, on up to 20,000 grayscale images sized 384 × 512
pixels. For our optimizer we used Adam with Nesterov mo-
mentum and used binary cross-entropy for our loss function.

Results and Discussion: Our network was able to identify
at least 40 new crater candidates. Two of these are shown in
Fig. 3. Both are from the foil I1008W. These both have yet to
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Figure 2: Examples of augmented analog craters added into
images of Stardust foils that do not contain craters.

be confirmed by further SEM analysis. Neither candidate was
found by [3].

The network achieved a specificity of 99.8%, measured
on a sample of 500 images chosen at random from the SAH
website which were confirmed not to contain craters. On a
validation set of 500 images that contain the analog craters
pasted into backgrounds without craters (i.e., a dataset that re-
flects the way in which the network was trained), the network
achieved a sensitivity of 99.8%. However, in order to ade-
quately evaluate the network, we also tested the network per-
formance on images of “true" craters. “True" craters are those
which have been determined, through high resolution scans,
FIB/TEM, or any other means, to be a real impact crater. Our
network correctly identified 18 of the 27 images that meet this
criteria. This represents an improvement over previously de-
veloped crater-search algorithms, as the algorithm developed
by [2] was able to correctly identify 8 of the 27 images. Our
network also represents an improvement in speed: while the
algorithm developed by [2] took about 4 minutes per proces-
sor core to search each image, our network can process 104

images/minute using an NVIDIA RTX 2060.
Because the network has been established as reliable, we

can effectively eliminate those images that did not receive a
significant prediction from the network. Less than 15,000
(≈ 4%) of the roughly 424,000 images in the SAH database
meet a threshold prediction value of 0.01. By removing all but
those 15,000 images from the SAH website, volunteers will
need to sift through significantly fewer images without craters,
and their time will be utilized more efficiently.

There is a difference of approximately 30 percentage points
between our network’s sensitivity on analog craters and its sen-
sitivity on true craters. This is likely due to the fact that data

augmentation, though effective, cannot replace the simple act
of collecting more raw data [9]. Detection sensitivity of the
network could be improved by creating more analog craters
with the LGG and recording more craters on each of the LGG
foils, increasing the diversity of crater morphologies within the
training set. Actual Stardust interstellar foil craters can also
be added to the training dataset, including those detected by
the current version of the network. False positives (e.g., pits)
detected by the current network are also helpful, as they can
be incorporated correspondingly into an improved training set
to re-train the network and improve sensitivity over time.

Figure 3: Examples of crater candidate images found by our
network.
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