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      Introduction: The discovery and categorization of 
fresh impact craters on Mars in the last few decades [1] 
has granted insight into surface processes (e.g. [2, 3]) 
and crater retention ages (e.g. [4-6]), as well as 
subsurface phenomena (e.g. [7, 8]).  
      The investigation of crater clusters, or a multitude of 
craters that formed simultaneously and are spatially 
close, provide insight into atmospheric processes and 
fracturing dynamics [9]. Observing the frequency and 
nature of fresh impacts can contribute towards dating 
Martian surfaces. Although there are not yet dateable 
samples from Mars, a crater chronology model can still 
be extrapolated from the Moon and calibrated with 
current impact distributions [4-6]. Occasionally, a new 
impact reveals subsurface water ice. These impacts can 
provide information about ice-table depths and the 
nature of clean ice on Mars [7, 10].  
      All of the characterized new impacts recorded 
previously were found by manually sorting through and 
comparing Context Camera (CTX) [11] images with 
other datasets. This process involves finding two 
consecutive images of the same area, identifying a new 
impact in the later image, and ensuring that the same 
impact was not present in the earlier image. This is time-
consuming and tedious, and it is possible that many new 
impacts were missed as a result of human oversight.  

A machine learning algorithm has the potential to 
streamline the process of finding new impacts, filtering 
image pairs to those most likely to contain new impacts. 
Using this new method of locating new craters, we can 
explore biases in the impact dataset by comparing 
impacts found by the machine learning algorithm to 
those obtained by the manual method and give a more 
holistic and accurate picture of the overall current 
Martian bombardment. To date, we have applied the 
algorithm to PDS-released CTX images within +/- 60° 
latitude and requested follow-up images from HiRISE 
[12], which are needed to measure crater diameters, 
characterize ice-exposing craters [10], and observe 
changing albedos of blast zones [2].   

Methods:  The machine learning model to detect 
fresh impact craters in individual CTX observations was 
trained by adapting an existing deep convolutional 
neural network (inception-v3) [13]. A new training set 
was constructed using 1858 manually identified 
examples of fresh impact craters, as well as 4973 
examples of non-impact regions of Mars’ surface.  

After training the fresh impact model, it was 
deployed across the entire CTX archive, containing 
approximately 112,000 observations at the time. Each 
CTX observation was broken into square tiles and the 
model produced a confidence value between 0 and 1 
indicating the likelihood that a fresh impact is present 
within each tile. On average, the full system running in 
parallel on a high-performance computing cluster took 
about 5 seconds to process each observation. Even with 
the manual review described below, this is a vast 
improvement on the 30-40 minutes that would be 
required for manual examination of each image. 

We manually reviewed the top 1000 highest 
confidence candidates identified by the machine 
learning classifier for which at least one possible 
"before" (probability of fresh impact < 0.5) and a 
possible "after" frame (probability >= 0.5) exists in the 
CTX archive.  For each candidate, we inspected all CTX 
observations of the same site location within the 
archive. The manual examination of the ML results was 
enabled by significant experience in studying fresh 
craters. We also checked for HiRISE images of the same 
location; HiRISE observations were already available 
for 228 of the 1000 candidates. 

If a candidate was deemed likely to be a fresh 
impact, we then checked the existing database for the 
site. For candidates that were not found in the database, 
we submitted requests via HiWish, the HiRISE public 
suggestion tool [14], to obtain follow-up high-resolution 
observations of each of these new sites to enable 
detailed measurements and analysis.  
   Once HiRISE images were acquired, the crater 
diameters were measured using the three-point tool in 
the JMARS program [15]. For crater clusters, all craters 
with a diameter ≥ 0.75 meters (3 bin-1 HiRISE pixels) 
were recorded. Any impacts with a smaller diameter 
were not included due to low resolution and possible 
inaccuracies in measuring. HiRISE images not yet 
available in JMARS were examined using the distance 
tool in HiView (www.uahirise.org/hiview/). 
      Preliminary Results:  We found that 708 (71%) of 
the top 1000 candidates were fresh impacts.  Of these, 
76 were newly discovered fresh impacts that had not 
been previously identified manually. Another 161 
candidates matched sites that were already known and 
included in the fresh impacts catalog [16].  The largest 
candidate group contained 461 features that visually 
appear to be fresh impacts but lack a "before" image in 
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the CTX catalog that would allow us to constrain the 
date of formation. However, since blast zones fade on 
the order of decades [2], these are almost certainly 
geologically recent impacts. Cross-matching these 
impacts with earlier observations by Mars Global 
Surveyor, Mars Odyssey, or the Viking orbiters could 
enable the inclusion of some of these sites as dateable 
fresh impacts as well.  This is an area of future work. 
      In addition to fresh impacts, the classifier also 
identified 165 impacts that did not appear to be "fresh" 
(e.g., absence of fresh ejecta, size, and presence of 
aeolian bedforms) and 89 features that were not impacts 
at all.  An additional 48 candidates were determined to 
be duplicates of other candidates in the top 1000, due to 
minor errors in registration between images (Fig. 1).  
 

 
Fig. 1. Results of manual evaluation of 1000 fresh 
impact candidates determined by the ML algorithm. 
 
      Of the newly discovered 76 fresh impacts, 45 have 
been imaged with HiRISE thus far. When compared to 
the broader database of 1111 measured new impacts, the 
average diameter of craters found by machine learning 
was smaller, 3.9 ± 0.5 (N = 11) versus 6.9 ± 0.3 (N = 
472) meters for singles and 6.0 ± 0.4 (N = 34) versus 6.7 
± 0.3 (N = 242) meters for clusters. The average 
diameter for clusters was calculated by taking the 
average of the effective diameters ((Deff = (∑ 𝐷𝐷𝑖𝑖3)𝑖𝑖

1/3; 
[1-4]). Further, 75.6% of the 45 newly discovered 
impacts were clusters whereas only 57.5% of the 
original database fell into this category. Generally, the 
impacts found by machine learning displayed fewer rays 
(55.6% versus 62.5%) and more diffuse halos (93.3% 
versus 86.6%) (Fig. 2). The locations of impacts in the 
two datasets do not seem to differ much spatially, 
although more analysis on this has yet to be done. The 
45 newly discovered impacts populate similar regions 
on Mars as the 1111 previously known impacts, areas 

which correlate well with thermal inertia and dust cover 
maps.  

 
Fig. 2. Comparison of a known new single impact 
currently in the database (left) and a machine learning 
new single impact (right). The known new crater is 
larger in diameter and has rays while the machine 
learning new crater has a diffuse halo.  
 
     Preliminary Conclusions: These initial findings 
with a limited sample size (N = 45) suggest that the 
machine learning algorithm might be more adept at 
detecting clusters and smaller-diameter new impacts. 
This algorithm or a similar one may be useful in 
reducing the bias towards larger fresh impacts in the 
existing database and contribute to a more accurate size 
frequency distribution.  
           The differences that appear to exist between the 
populations can be attributed to a multitude of reasons, 
including biases towards impacts with more visible 
ejecta cover during the manual detection process. 
However, these findings are based on a very small 
sample size and contain uncertainties. As more HiRISE 
images of the 76 newly discovered impacts are obtained 
and released, the discrepancies, if there are any, between 
the original database and the machine learning dataset 
can be explored in more detail. 
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