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Introduction: The surface of Mars is riddled with eo-
lian landforms created by accumulating sand particles that
are carried by the wind. When the sand supply is limited,
these landforms tend to take the shape of isolated crescen-
tic barchan dunes whose slipfaces are oriented in the dom-
inant wind direction. As a result, analyzing the morpho-
metrics of barchan dunes can help characterize the winds
that formed them. Previous studies inferred the direction
of prevailing surface winds from the orientation of dunes
on Mars locally through manual analyses of spacecraft im-
agery [1, 2, 3]. However, building a global map remained
challenging, as manual detection of individual dunes over
the entire Martian surface is impractical. Automatic tech-
niques based on traditional computer vision algorithms are
largely ineffective at identifying the outlines of dunes from
images, due to the difficulty to separate the feature of in-
terest from the background - even with the aid of advanced
statistics [4]. Although topography may assist the detection
process, it is often not available at the required resolution.
Here we employ a state of the art instance segmentation
neural network - a type of artificial intelligence algorithm
- to detect and analyze isolated barchan dunes on a global
scale. The algorithm we use, Mask R-CNN (Regional Con-
volutional Neural Network) [5], accurately detects dunes
and their outlines, which are automatically analyzed to ex-
tract the directions of the dominant wind and net sand-flux
vectors. Our trained network currently supports the detec-
tion of isolated barchans and Transverse Aeolian Ridges
(TARs), and can be generalized to detect other types of eo-
lian bedforms.

Dune Detection Method: Traditional computer vision
object detection algorithms apply a wide range of mathe-
matical transformations to identify edges, corners, or well-
defined geometric shapes within an image. In realistic con-
ditions, these methods typically underperform a human in-
terpreter, and are considered unreliable for many purposes.
In recent decades, artificial neural networks have revolu-
tionized object detection in images. This family of deep su-
pervised machine learning techniques achieves abstraction
comparable to that of humans by stacking layers of parame-
ters given as inputs to non-linear activation functions. Each
layer in the model extracts higher-level features from the
previous layer: the first layers usually learn simple features
such as edges or corners, and deeper layers can identify
more abstract features such as faces, animals or letters and
numbers. Here, we employ Matterport’s implementation
of Mask R-CNN [5, 6], an instance segmentation neural
network, to detect, classify, and mask eolian landforms on
Mars. As a proof of concept, our study focuses on the de-
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Figure 1: Dunes (—28.89°E, —44.22°N) and their contours
produced by our detection algorithm. Red arrows indicate
the vector normal to the slipface. The bars in the rose dia-
gram show the distribution of the dominant wind direction
(red) and net sand-flux (blue), and the dials indicate the
mean of the distribution.

tection of barchan dunes, which are typically isolated and
have a distinct shape, to extract surface wind directions on a
global scale on Mars. In order to train the model, we extract
images of dune fields obtained by the Mars Reconnaissance
Orbiter Context Camera (MRO CTX) [7]. Images of dune
fields were located using the global dune field catalog [8],
standardized and cropped to a resolution of 832 x 832 pix-
els. Using Labelbox’s online instance segmentation plat-
form we labeled over 5000 instances of eolian features in
1008 images, subsequently employing image augmentation
and weight decay to prevent overfitting [9].

Deriving Wind Direction: When winds are unidirec-
tional, the horns of barchan dunes tend to be symmet-
ric, whereas bimodal wind regimes with divergence angle
> 90° tend to create asymmetric barchan dunes, with one
horn elongating in the direction of the net sand-flux. Less
commonly, horn asymmetry may also be caused by discon-
tinuity in the surface slope, dunes collision, or influx asym-
metry [10, 11]. In order to derive the dominant wind direc-
tion and the net sand-flux, we combine crestline-orientation
and horn-geometry statistics within fields of barchan dunes.
When both vectors (dominant wind and net sand flux) are
aligned, a unimodal wind regime is inferred. First, we
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determine the vector normal to the slipface of individual
dunes as a proxy for the dominant wind direction. To this
end, we find the bisector of the head angle of a triangle
that is formed by the dune slipface and the horns’ apices
(shown in Figure 1 as green X’s). To detect the center of the
slipface, we run a convexity defect algorithm which works
by finding the maximum distance between the convex hull
of the contour and the contour itself. To detect the horn
apices, we calculate the second derivative of the dune con-
tour, starting from the slipface. To determine the net sand-
flux direction we use the azimuth of the slipface relative to
the dune center of mass. This approach has not been used
before to our knowledge, but appears to produce robust re-
sults. Groundtruthing of our methodology with data from
terrestrial dune fields will be presented at the conference.

Results: We manually inspected 100 randomly se-
lected images and found that our detection neural network
correctly identified (true positive) 86 + 5% of the isolated
barchan dunes. The algorithm falsely identified a feature
as a barchan dune (false positive) in only one single im-
age. To illustrate our inferred wind directions, we present
rose diagrams showing the polar distribution of the vec-
tor normal to the slipface of the dunes in the field, thought
to roughly reflect the dominant wind direction (red bars in
Figure 1), and the azimuth direction of the slipface center
relative to the center of mass, which robustly aligns with
the net sand-flux direction (blue bars in Figure 1). The di-
als in the rose diagrams show the averages of these distribu-
tions, weighted by the certainty that the detected object is a
barchan dune (as outputted by the neural network) and that
the detected location of the slipface is correctly identified
and not some other convex defect. The latter is estimated
by dividing the depth of the convexity defect by the size of
the dune. To demonstrate the efficacy of our algorithm, we
show two examples: a field of symmetric barchan dunes
(Figure 2), in which the horns are roughly symmetric, and
a field of asymmetric dunes, where the barchans elongate
in the net sand-flux direction through a fingering instability
(Figure 3). For symmetric barchans, the wind was inferred
to be unidirectional as the dominant wind component and
the net sand-flux are aligned to the northwest. In contrast,
the asymmetric barchans indicate a net sand-flux towards
the northeast and southerly dominant wind direction.

Conclusions: We employed a state of the art con-
volutional neural network to detect the outlines of indi-
vidual barchan dunes on Mars and infer wind direction.
Next, we will validate our wind-mapping methodology
with groundtruthed data from terrestrial dune fields. Fi-
nally, we will expand our analysis to map surface winds
globally on Mars. We expect our future dataset to serve as
a constraint for atmospheric circulation models, and thus to
help predict weather for upcoming in situ missions as well
as shed new light onto the recent climate history of Mars.
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Figure 2: Example field of symmetric barchan dunes
(—53.67°E, 6.79°N), with inferred dominant wind and net
sand-flux directions (here roughly aligned).
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Figure 3: Example field of asymmetric barchan dunes
(—19.96°E, 13.06°N). Here, the dominant wind and net
sand-flux are not aligned. Instead, the elongation of the
horns indicates that the net sand-flux is to the north-east,
whereas the dominant wind direction is southerly.
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