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Introduction: The possibility of the presence of 

water (hydrogen-bearing substances such as H2O and 

OH) on the Moon was first brought about by samples 

returned by the Apollo missions. Since then, numerous 

additional evidence, such as detections of adsorbed 

hydroxyl (OH) and anomalous polar neutron flux, fur-

ther support this concept [1-4]; and recently, the pres-

ence of molecular water on the Moon has been con-

firmed at the local scale [5]. Water is not just a crucial 

ingredient for life, in general; in the lunar context, it is 

an analog to the behavior of volatiles on other airless 

bodies and is a potential resource for future exploration 

missions. Previous studies suggest that the lunar rego-

lith alone may host a significant reservoir of water [6] 

and underline the importance of locating regions of 

interest for extraction or future analyses. To pursue this 

goal, however, the origin and evolution of water on the 

Moon must be better constrained and understood. 

One potential explanation for the origin and upkeep 

of water in the lunar environment is through the collec-

tion of processes called space weathering. Surfaces 

exposed to these processes generally alter over time 

and experience shifts in optical properties and chemi-

cal and physical changes [7]. Sources of water can be 

attributed to space weathering, whether via asteroidal 

or cometary impact [8] or through solar wind implanta-

tion [9]. The latter has been proposed to be capable of 

inducing a lunar water cycle when combined with oth-

er surface processes such as ballistic ejection and re-

hydroxylation [9]. This study seeks to investigate the 

possible link between regolith alteration and water 

production as evidenced by lunar spectra from the  

Diviner Lunar Radiometer and Moon Mineralogy 

Mapper (M3). To deduce the degree of space weather-

ing, the optical maturity parameter OMAT defined by 

[10] will be used. 

Multi-instrument data: The Diviner Lunar Radi-

ometer instrument has three channels designed specifi-

cally to measure the Christiansen Feature (CF) of the 

Moon, globally. This feature corresponds to silica 

abundance, with shorter and longer wavelengths indi-

cating silica-rich and silica-deficient compounds, re-

spectively. Diviner CF values have been used to map 

global silicate mineralogy previously, as well as have 

been shown to be influenced by space weathering. 

Lucey et al. (2017) [11] showed that the slight shifts in 

CFs that result from space weathering can be partly 

mitigated by accounting for overall surficial maturity. 

Removal of these shifts are necessary to increase accu-

racy of CF value interpretations; however, these data 

cannot be completely disregarded. These shifts enable 

the quantification of the degree of space weathering 

experienced by a surface and can therefore be used as 

additional information to investigate and classify its 

impact on the lunar regolith and to OH therein.  

Moon Mineralogy Mapper observations provide 

measurements on lunar OH levels, which have been 

have used to produce a global OH abundance map [6]. 

However, M3 OH data is not unique to one form of 

water; derived OH abundances can be indicative of 

actual OH, H2O, or of OH-bearing minerals like apa-

tite. Their OH map employs a thermal correction 

method derived from Diviner data as described in [12]. 

Data for Diviner CF values has been obtained from 

available global data products on the Planetary Data 

System and independently calculated. OMAT values 

have been retrieved from the USGS. M3-derived OH 

abundances are provided by [6]. 

Methods: In order to search for potential links be-

tween these datasets by investigating subtle shifts in 

CF maxima and their correlations to OH abundance 

and OMAT, we employ machine learning and statisti-

cal analyses such as a Bayesian classifier. Unsuper-

vised machine learning methods such as Hierarchical 

or K-means Cluster Analysis (HCA and KCA) limit 

outside biases and result in natural groupings of data; 

moreover, they have proven useful for distinguishing 

spectra and spectral properties in previous studies on 

other airless bodies. We will firstly apply these tech-

niques to CF values, CF value shifts from OMAT val-

ues, and OH abundances independently, then to a 

combined dataset so as to discern the reason for the 

formation of each cluster. Our Bayesian classifier uses 

prior probabilities based on native data distributions. 

Our independently calculated CF data are binned 

into 4 pixels per degree (ppd) and reflects previously-

reported CF values between the latitudes of 75oN / 

75oS; data falling outside that region are not consid-

ered. Corresponding to nominal CF values reported in 

literature, we further remove all values less than 7.6 

μm and greater than 8.6 μm, which almost entirely 

includes data only from our noisy polar sections. Re-

sults from [6] report accuracy for OH abundance be-

tween 85oN / 85oS, which will be restricted to match 

the spatial level of our CF data, as well as resampled to 

match the 4 and 32 ppd CF maps. OMAT values will 

also be resampled to match these spatial resolution 

levels. 
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Preliminary Results and Future Work: Our cur-

rent results using HCA on lunar CF and OH abundance 

values show that machine learning is capable of distin-

guishing lunar petrology and overall water abundance.  

Maria, highlands, and several transition zones result in 

clusters and additionally follow large craters in our low 

resolution dataset. HCA on OH abundance mimics the 

poleward gradient seen in [6].  

Using the distributions that naturally occur within 

CF and OH datasets, we have developed a Bayesian 

classifier that maps the surface into four classes. Prior 

probabilities for this classifier were determined from 

the main modes of data, highlighting highlands and 

maria for CFs (centered at 8.16 μm and 8.30 μm, resp.) 

and regions of low and high OH abundance (20ppm 

and 100ppm). The order of most to least likely classifi-

cation is low OH highland, high OH highland, low OH 

maria, high OH maria, which is a fairly obvious trend 

given the comparison of area size of maria to highland 

and that OH increases primarily latitudinally. The dis-

tribution for these classes in the CF vs. OH space are 

shown in figure 1, and their application to the lunar 

surface is shown in figure 2. In the future we look to 

further parse these classes by mineralogy and region. 

Initial attempts highlight crater rims (e.g. Plato, Po-

sidonius, and le Monnier), and portions of northern 

hemisphere maria and mountains. Pyroclastic deposits,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dark, low albedo regions visibly similar to maria, are 

currently being grouped into the ‘High OH Maria’ 

class. This grouping is likely a result of some pyroclas-

tic deposits having increased FeO abundances [13], 

which the CF is also related to, but will need further 

investigation to make a distinction between these re-

gions. This classifier currently uses uncorrected CF 

values and therefore retains information for the degree 

of space weathering. We are eager to compare these 

results with corrected CF values. Our Bayes classifier 

will additionally lay the ground work for future appli-

cations of neural networks, as it enables us to develop 

a labeled training set of lunar data. As this classifier 

advances, it may also prove helpful in locating previ-

ously undiscovered pyroclastic deposits. 
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Figure 1: The distribution of CF and OH abundance data, color 

coded to highlight the four modal classes.  

 

 

Figure 2: Four Bayesian classes applied to the lunar surface. 

Final classes were determined by the highest posterior probabil-

ity for each location. Class coverage percentages are as follows:  

Low OH Highland – 52.37%  

High OH Highland – 37.15% 

Low OH Maria – 9.48%  

High OH Maria – 1.00% 
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