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Introduction: Volcanic constructs and their asso-

ciated heat are critical to understanding both the geolog-
ical evolution of Mars and its potential for past or cur-
rent habitable environments. Although large (50-1500 
km basal diameter) volcanic constructs are well docu-
mented, smaller volcanoes have been studied  regionally 
(e.g. [1,2]). Datasets to support a global inventory are 
available, but are too vast for manual examination.  

Machine learning is a potential solution [3]. Deep 
learning detectors have been demonstrated for impact 
craters [4], volcanic rootless cones transverse aeolian 
ridges [5], rockfalls [6], terrain types [7], and other land-
forms [8]. GPUs (graphics processing units) enable a 
planetary data set to be processed in days [9].  

We demonstrate here that deep learning can easily 
detect small volcanic edifices in Martian data sets, and 
discuss its use in inventory construction.   

Approach: We tested two techniques previously 
applied to crater detection: object detection with 
YOLO-v4 (You Only Look Once - v4) [10] and object 
segmentation using Mask R-CNN [9]. Mask R-CNN 
had higher accuracy in our test, so we report on it below. 

The Mask R-CNN architecture proposes regions of 
interest, then generates bounding boxes and a semantic 
segmentation (pixel-level classification). We used a 
ResNet101 subnet for region proposal [11]. We tuned 
initial weights on the COCO (Common Objects in Con-
text) data set [12].  

Using JMARS Public 5.1.6 [13], we exported the 
MOLA (Mars Orbiter Laser Altimeter [14]) Colorized 
Elevation layer as JMARS JPEG gridded data at 128 
pixels per degree (463 m/pixel at the equator) for 10 re-
gional areas with small volcanoes in the Tempe Terra, 
Syria Planum, and Pavonis Mons SE areas [1, 2, 16-19].  

MOLA images were randomly split into 7 training 
and 3 test (e.g. Fig 1A). Two novice annotators (com-
puter science graduate students Dileep and Memon) out-
lined 230 readily apparent (steep) volcanic summits in 
training images. They did not attempt to identify more 
subtle edifices. Sakimoto, working separately from mul-
tiple data sets, mapped the apparent extent of all vol-
canic edifices in the test images, as well as tagging those 
with steep summits. Of 140 edifices in the test images, 
45 had steep summits. Edifices ranged in size from 4 to 
~80 km.  

Contrast limited adaptive histogram equalization 
(CLAHE) was applied to all images.  The 7 training im-
ages were increased to 63 by scaling, rotation, and flip-
ping. MASK R-CNN parameters were fit on the 63 

training images using stochastic gradient descent (SGD) 
and a minibatch size of 4 images.  

The trained Mask R-CNN network was applied to 
the three test images at a detection probability threshold 
of 0.70. At this threshold, 43 of the 45 steep summits 
were uniquely detected in a single predicted bounding 
box (true positives). The remaining two were captured 
within the same bounding box. An additional 17 pre-
dicted bounding boxes contained no steep summit (false 
positives), 12 of which were volcanic constructs.  

Replication with THEMIS Data. We conducted a 
second test with the same methods, but using THEMIS 
(Thermal Emission Imaging System [19]) daytime tem-
perature data for 11 areas on the South and East lower 
flanks of Pavonis Mons volcano (JMARS exported 
JPEG gridded data at 256 pixels per degree, 231 m/pixel 
at the equator, e.g. Fig. 1B). For THEMIS data, the 
seven training images had 48 steep summits annotated. 
The four test images had 35 edifices mapped, of which 
13 were tagged as having steep summits. At the 0.70 
threshold, 12 of the 13 test steep summits were detected, 
with the single false negative cut off at the image's edge 
(Fig. 1B). There were 23 formal false positives, but one 
was a steep summit missed during test set annotation, 
12 others were other volcanic constructs (shallow slope 
shields, lave tube ridges, rift vents, etc.). 

Results: Figure 1 shows one MOLA and one 
THEMIS test image with the human-mapped edifices 
(colored polygons) and the Mask R-CNN bounding box 
predictions superimposed. Pink regions are volcanic ed-
ifices tagged as having a steep summit, and yellow are 
other volcanic edifices. Of the 16 steep summits in this 
MOLA image, all were detected. There were five false 
positives: one linear summit vent whose steep summit 
was separately detected, three volcanic edifices without 
steep summits, and one non-volcanic feature. For the 
THEMIS image, there were seven detections of steep 
summits, one false positive (a lava tube ridge), and the 
single false negative mentioned above. 

Inventory Construction: Machine learning can 
aid, but not replace, geologist annotators. The morpho-
logical variety of volcanic edifices (particularly in polar 
regions), and the range of quantitative measurements 
and qualitative characterizations needed for a useful in-
ventory, make manual mapping indispensable. Drawing 
on industrial annotation and work flow approaches, we 
are developing software for integrating annotation and 
machine learning in an active learning workflow [20].  

Based on pilot studies and prior regional surveys, 
we expect 2000 or more volcanic edifices in the 3-50+ 
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km range globally. We are training detectors for Context 
Camera (CTX) ([21]), Thermal Emission Imaging 
Spectrometer (THEMIS) daytime visible [22], THEMIS 
daytime IR, and MOLA data, as well as combinations 
of these. An accurate inventory with a minimum vol-
cano size of 3 km basal diameter should be possible with 
2000-3000 hours of geology student annotation effort, 
guided by machine learning and under planetary geolo-
gist supervision.    

Conclusions: Although our pilot study targeted the 
most distinct edifices, the high accuracy achieved with 
minimal effort and training is encouraging. Our opera-
tional workflow will accumulate hundreds of times 
more training data, including informative examples 
chosen by active learning. MOLA data should support 
detecting shields with low flank slope, uniform visual 
appearance, irregular planform shape, and/or potential 
overlap with neighboring shields. Image data will likely 
excel for detecting visually distinctive edifices like root-
less cones, shields with prominent radial flow textures, 
steep-sided cones, and embayed shields. 
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Figure 1. Test images from machine learning proof of 
concept study. A) MOLA regional topography showing 
the locations of figures (B) MOLA data centered at 
1.603°S, 252.406° E. and (C THEMIS daytime infrared 
data centered at 4.867°S, 246.438°E.). Pink polygons in-
dicate a steep summit volcanic edifice; all other volcanic 
edifices are yellow. The black boxes are machine learn-
ing edifice detections from a steep summit trained net-
work. 
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