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Introduction: The SuperCam instrument suite [1,2, 

3] on the Perseverance rover is a versatile tool for stand-

off and remote sensing observations. In addition to La-

ser Induced Breakdown Spectroscopy (LIBS), which is 

the focus of this abstract, SuperCam capabilities in-

clude: 1) color Remote Microscopic Imager (RMI), 2) 

Raman and time-resolved luminescence spectroscopy 

(TRLS) up to 12 m from the rover, and 3) passive spec-

troscopy in the 1.3-2.6 micron range. 

This abstract focuses on SuperCam LIBS, providing 

information about the instrument, the data processing 

steps, and initial quantitative calibration. Similar to 

ChemCam [4,5], SuperCam LIBS uses a pulsed 1064 

nm laser to ablate small amounts of target material at 

distances <7 m from the rover. The atomic emission 

spectrum of the plasma spark is collected and used to 

determine the target elemental composition.  

SuperCam LIBS data: SuperCam collects LIBS 

spectra across 5 spectral ranges: Ultraviolet (UV; 245-

340 nm), Violet (VIO; 385-465 nm), Green (534-625 

nm), Orange (613-722 nm), and Red (718-853 nm). The 

Green, Orange, and Red spectra are concatenated into a 

continuous VNIR spectrum (536-853 nm). SuperCam’s 

spectral-resolution requirement for the Raman spectral 

range resulted in significantly improved LIBS resolu-

tion in the green spectral range [2], yielding better de-

tection for sulfur emission peaks. SuperCam can also 

take advantage of the intensifier in the VNIR region [2] 

to study weaker emission lines or time-dependent phe-

nomena. 

Raw data are subjected to a series of preprocessing 

steps: 1) remove anomalous spikes due to cosmic rays 

(not applied to laboratory data); 2) subtract “dark” spec-

tra of the target (acquired when there is no plasma spark) 

from the LIBS spectra; 3) denoise the spectra using a 

wavelet transform algorithm, 4) convert spectra from 

counts to photons using the instrument response; 5) 

stitch the Green, Orange, and Red ranges together; 6) 

wavelength calibrate the spectra; 7) subtract the 

smoothly-varying continuum to isolate signal from 

atomic emission lines; 8) convert to units of radiance. 

SuperCam LIBS observations on Mars will be simi-

lar to ChemCam observations, consisting of a series of 

“points” on the target organized into a line or grid. At 

each point, we acquire multiple spectra (typically 30 la-

ser pulses, one spectrum per pulse). The first ~5 single 

shot spectra on Mars targets tend to be contaminated by 

surface dust, so these are excluded when calculating the 

“statistic spectra” (average, median, and standard devi-

ation) for each point. All spectra from each point are 

stored in a single FITS file. 

LIBS Calibration: LIBS provides information 

about the elemental composition of the target. Super-

Cam will quantify the following elements as oxides: 

SiO2, TiO2, Al2O3, FeOT, MnO, MgO, CaO, Na2O, and 

K2O. Trace/minor elements (e.g. Ba, Cr, Li, Rb, Sr, etc.) 

will also be quantified, but are not discussed here. 

Quantifying the composition is non-trivial: the in-

tensities of the atomic emission lines are influenced by 

physical and chemical properties of the sample, e.g., an 

emission line from one element may be influenced by 

the presence of other elements. Because of this, a “uni-

variate” approach based on plotting the intensity of a di-

agnostic line against composition is often not adequate. 

Instead, multivariate regression approaches that develop 

statistical models using all of the available spectral 

channels (not just those from one element) to predict an 

element’s concentration tend to be more successful [6].  

Database: Multivariate regression models must be 

trained on spectra from a suite of samples for which the 

elemental composition is known, and this data set must 

be large and diverse enough to span the range of com-

positions expected on Mars. For the initial SuperCam 

calibration effort, we use a suite of 1198 spectra of 334 

different samples acquired using the Flight body unit [2] 

and the Engineering Qualification Model (EQM) of the 

mast unit [1]. The compositions in the database range 

from “typical” (basalts, olivine, pyroxene), to “unusual” 

(e.g. apatites, manganese oxides). The bulk of these data 

were acquired at a distance of 3 m (the typical observa-

tion distance on Mars) but a subset were acquired at 1.5 

m (the distance to the calibration targets), and 4.25 m. 

An important part of the calibration process has been 

to carefully assess this data set to remove outliers. These 

include bad spectra (e.g. missed targets or low signal to 

noise) as well as valid spectra of targets with composi-

tions that are too different from the majority of the tar-

gets to be accurately modeled. The latter case typically 

occurs for pure mineral end-members that have very 

high concentrations of one or more element (e.g. Mn 

ores, apatites, etc.). These samples can have an outsized 

influence on a model, overriding the model’s ability to 
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accurately predict more “typical” compositions. How-

ever, these unusual samples can be useful when using 

methods that are more adaptable (e.g. local regression, 

ensemble methods, submodels) and in such cases they 

are kept in the data set. 

Additional preprocessing: In addition to the prepro-

cessing applied to all raw data, additional preprocessing 

steps can be applied to the spectra prior to quantifica-

tion. The spectra are typically masked near the edges of 

the spectral ranges (<245.5 nm, 712.17-713.7 nm, 

>848.3 nm) to account for the strong variations in the 

instrument response function there.  

Peak binning can be useful for developing models of 

elements with relatively weak emission lines [7] and 

also significantly improves the robustness of models to 

small shifts in wavelength calibration. It also reduces 

the number of input variables, speeding up model cross 

validation and training. To apply peak binning, we first 

calculate the average spectrum of the training set and 

identify local minima and maxima of that spectrum. 

Then, for each individual spectrum, we sum the signal 

between each pair of local minima and assign it to the 

bin corresponding to the local maximum.  

Normalization helps reduce intensity fluctuations 

between spectra of the same target and mitigates some 

of the effects of distance. Typically spectra are either 

divided by the sum of all signal, or by the sum of the 

signal for each of the 5 spectrometers, such that the in-

tensity values across the full spectrum sum to 1 or 5, 

respectively. We have also found that in some cases, 

standardizing the spectra by subtracting the mean and 

dividing by the standard deviation on a per-spectral ele-

ment basis can result in improved regression results.  

Model Selection: We subdivide the full suite of data 

into five subsets (“folds”) for each element, with a sim-

ilar range of compositions within each fold. All spectra 

from a given sample are included in the same fold. One 

fold is defined as a “test set” and is excluded from anal-

ysis until the regression model parameters have been 

optimized. The rover calibration targets are explicitly 

assigned to the test set. Model parameters are optimized 

using cross validation: each of the 4 training set folds is 

withheld in turn and predicted using a model trained on 

the remaining folds. By repeating this process for a 

range of model parameters, we determine the optimal 

parameter settings for each method. Each optimized 

model is then used to predict the test set, and the test set 

results are compared to determine which regression 

method gives the best accuracy. The performance on the 

test set at 3 m will be the primary factor in choosing a 

model, but the model robustness to wavelength shifts 

(+/- 1 pixel) and distance will also be considered. 

A wide variety of multivariate regression methods 

are currently being considered, including: Partial Least 

Squares (PLS), LASSO, Elastic Net, Random Forest, 

Gradient Boosting, and local regression. Many of these 

are implemented via the scikit-learn library [8] and/or 

the PyHAT library [9]. In addition, we are considering 

combinations of “sub-models” trained on restricted 

composition ranges, similar to the approach used for 

ChemCam [9, 10, 11].  

LIBS on Mars: Once the best regression model is 

determined for each element based on test set RMSE 

and robustness to expected variations in the data, the 

models will be incorporated into an automated pipeline 

that will produce quantitative elemental abundances al-

most immediately upon receipt of data from Mars. 

The regression models will be based on data col-

lected with the EQM mast unit under laboratory “Mars 

chamber” conditions rather than with the flight unit un-

der actual martian conditions. We will therefore collect 

calibration target data as soon as possible after landing 

on Mars, to determine whether an “Earth-to-Mars” cor-

rection similar to that used by ChemCam [10] needs to 

be applied to make the data sets compatible. 

Although the calibration database samples were se-

lected to be realistic but diverse, it is possible that min-

erals will be identified on Mars that are not well repre-

sented in our calibration database. This may require col-

lection of more database spectra and development of up-

dated regression models to better handle the data re-

ceived from Mars. Specialized models that are more ac-

curate for certain key composition types encountered on 

the mission (e.g. Fe-Ni meteorites, carbonates) at the ex-

pense of generalizability are also a possibility. 

This abstract is being written prior to the Persever-

ance rover landing, but by the time of the conference, 

initial LIBS data from Jezero crater may be available. 

Experience from ChemCam shows that the ability to 

rapidly assess the elemental composition of targets at a 

small scale from a distance results in a rich geochemical 

data set and also provides vital information for directing 

more resource-intensive contact science and drilling ac-

tivities. With the addition of Raman/TRLS and VNIR 

spectroscopy, SuperCam will play an important role in 

guiding the Perseverance rover’s efforts to collect well-

characterized samples for eventual return to Earth. 
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