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Introduction: The global occurrence of alluvial       
fans on the martian surface suggests that Mars was         
once a wetter place, at least episodically, into the         
Amazonian [1]. However, we still lack good       
constraints on the amount of water that built the         
martian fans and the climate in which they formed. A          
terrestrial study by Stepinski and Stepinski (2005) [2]        
suggests that insights into past climate and formation        
processes may be constrained from the morphology of        
drainage basins using the circularity function.      
However, this study did not investigate drainage basins        
in basaltic terrains or periglacial environments – which        
is important as Mars is mostly basaltic and leading         
hypotheses suggest martian fans likely formed in cold        
and icy climates. Moreover, this study did not        
characterize the basins of alluvial fans. 

Here we use the circularity function of alluvial fan          
drainage basins in basaltic terrains and different       
environments to explore whether climate plays a       
dominant role in fan basin morphology. We also use         
new insights and algorithms to test and improve the         
functionality of the circularity function. 

Methodology: The alluvial fans investigated in       
this study were randomly selected in basaltic terrains        
that span different latitudes and climatic regimes. In        
total, 294 basins were collected from Iceland,       
Greenland, Siberia, the Mojave Desert, and Hawai’i       
islands. The fans were identified using Landsat images        
(mosaiced by Google Earth and accessed in QGIS) and         
the basins of these fans were manually delineated as         
shapefiles. Each shapefile was then used to extract        
basin elevation data from high-resolution digital      
elevation models (DEM). For Arctic basins we used        
the ArcticDEM 2 m/pixel dataset [3], while for the         
U.S. basins we used the USGS national ⅓ arc-second         
DEM dataset [4].  
The Circularity Function. ​The circularity ratio is       
defined as . The circularity function   4 π  [2]C =  A

P 2     
consists of the planform circularity ratio at       
equi-partitioned slices of elevation across the basin’s       
elevation range. The basin’s relief is normalized to be         
1, such that .   (z) 4 π , 0 z ≤1C =  A(z)

P (z)2  <   
Subsequently, is the planform circularity of the (1)C       
entire basin. The circularity function for each basin        
was calculated in MATLAB using the TopoToolbox       
[6]. The perimeter of each basin slice was calculated         
using an improved algorithm by Prashker (1999) [7]        
that approximates the smooth perimeter of a raster        
image.  
Hierarchical Clustering. ​Hierarchical clustering is an      
unsupervised technique that groups data into pairs on a         

dendrogram. Hierarchical clustering makes it possible      
to see natural divisions within a dataset, after which         
clusters can be judiciously chosen. Ward’s method was        
used for linkage, and Euclidean distances between       
circularity functions were used to determine similarity       
[2]. 
Climate Data​. We used mean annual precipitation as        
our main climate metric for each basin, due to the          
inferred influence of available water from precipitation       
on basin formation and morphology [2]. Mean annual        
temperature and annual temperature range were also       
considered. The 30 arc-sec CHELSA dataset [8,       
spanning 1979-2013] was used to extract climate data        
due to its high resolution, allowing us to collect data          
within each basin, rather than using a regional data set.  

​Results: ​Figure 1 presents the cluster tree calculated         
from all 294 basins. The nodes found at the bottom of           
the tree each correspond to at least one drainage basin.          
The cluster tree bifurcates into two distinct       
morphological classes (Fig. 1). A manual examination       
of the basins in each of these classes shows that the           
basins in the leftmost major branch tend to be more          
compact, while the ones on the right tend to be more           
elongate and dendritic in shape (Fig. 1). There are         
fewer basins in the rightmost side (65 versus 229), but          
they exhibit more individual variation in circularity,       
hence pertaining to more nodes. For classifying the        
basins further, we found it more useful to run the          
clustering algorithm on each morphological class      
separately. A focus was thus placed on the 229 more          
compact basins, as the longer basins exhibit fewer        
similarities, as reflected in the dendrogram. Based on        
Figure 1, four sub-classes exist for the leftmost class.  

 
Figure 1:​ Drainage Catchment Dendrogram with 

Icelandic Examples 
Figure 2 presents each of these subclasses. Basins are         
colored according to their location. Within each       
morphological subclass presented above, there is still a        
large amount of variation. Moreover, it is clear by         
visual examination that each class itself is somewhat        
similar, with the circularity of basins in classes 2, 3,          
and 4, rarely exceeding of the final basin    0%± 5     
circularity. It is difficult to visually isolate       
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morphometric classes from these basins and, with the        
exception of cluster 1, little to distinguish them from         
one another. 

 
Figure 2​: Drainage Basin Clusters 

Next, one can compare climate statistics between the        
clusters. Figure 3 presents these results in boxplot        
form. 

 ​Figure 3:​ Climate Statistics for Basin Clusters 
 
We then compared climate statistics between the       
clusters (Fig. 3). As shown in Figure 3, our analysis          
failed to demonstrate a strong correlation between       
circularity function and climate within the      
morphometric sub-classes in Figure 2. An analysis of        
variance at an -significance of 0.05 reveals that some   α       
clusters in some variables have climate statistics that        
are different from others. No clusters in any climate         
variable have different statistics than all others, and the         
clusters that are different are not consistent across all         
climate variables. 

In order to attempt to reduce dimensionality of the          
dataset, a principal component analysis was done on        
the circularity functions. This yielded a primary       
principal component that explained 86% of the       
variance, with monotonically decreasing coefficients;     
clustering basins using only their value on that        
principal component led to similar results as the        
clustering from the full dataset. When examining a        
subset of Andean basins taken from Stepinski and        
Stepinski (2005) [2] with PCA, the first 3 principal         
components were necessary to explain the same       
amount of variance between basins [2]. 

​Discussion: ​Our results contrast with those       
presented previously by Stepinski and Stepinski (2005)       
[2]. In their study larger basins than those explored in          
our study had circularity functions which visually       
revealed distinct morphological classes, and typically      
exhibited distinct variation and features across the       
basin’s elevation range. The PCA and visual       
examination of the clusters in Figure 2 both suggest         
that these smaller basins’ clusters’ greatest variance       
comes from differences between basins in normalized       
circularity at low normalized elevations. It is possible        
that the circularity function is not enough, at least on          
its own, to connect smaller basins with climate. It is          
also possible that circularity may relate more directly        
with the mechanism of formation (e.g., water-carved       
erosion, frost-cracking, etc.) rather than the climate.  

Moreover, while the DEMs used are high        
resolution, the drainage basins’ small size makes the        
pixel-count of each basin relatively low compared to        
the basins in Stepinski and Stepinski (2005) [2]. A         
preliminary analysis of a subset of basins from        
Stepinski and Stepinski’s Andean sample using SRTM       
1 arc-second DEMs [9] resampled to various lower        
resolutions, suggests that lower resolution can lead to        
significant differences in the calculated normalized      
circularity function.  

​Conclusion: ​Our study suggests that the circularity        
functions of small drainage basins (~​0.1-1.2 km in        
length​), like those of alluvial fans, do not have clear          
trends with mean annual precipitation. However, it is        
possible that they instead reflect other environmental       
conditions or basin formation processes. Future work       
will focus on expanding our basin database and        
constraining the minimum DEM resolution and basin       
size needed for accurate analyses with the circularity        
function. 
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