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Introduction: The largest tidal deformation at Eu-
ropa and Ganymede occurs over the course of an or-
bital/rotation period - this is the diurnal tide. The amount
of radial deformation may be characterised by the tidal
Love number h2, and the corresponding gravitational po-
tential due to this deformation is described by k2 [e.g.,
1]. Determining these constants will not only confirm if
a subsurface ocean exists, but may also help constrain
the thickness of the overlying ice, if the shear modu-
lus/rigidity of the ice shell is known. However, the ocean
thickness cannot be determined from the diurnal k2 and
h2 as these parameters are typically insensitive to ocean
thickness. In this work we assess if measuring tidal de-
formation over more rapid timescales can shed light onto
the thickness of Europa’s and Ganymede’s oceans.

Love number calculations generally neglect the
ocean dynamics that must occur as the surface of the
satellite adjusts to the time-varying tidal potential [e.g.,
1, 2]. This equilibrium tide assumption is well-justified
over diurnal timescales; the speed at which the surface
can adjust to diurnal tidal forces is rapid compared to the
period of forcing if the ocean is thick (Ho = 10 km to
100 km). The adjustment speed is similar to the gravity
wave speed,

√
gHo, which is fast for thick oceans [1, 3].

Both [4] and [5] found that if a subsurface ocean is very
thin then resonant amplification of the tidal response and
corresponding Love numbers may occur, as the eigenfre-
quency of the ocean approaches the forcing frequency.
[6] demonstrated that resonant amplification of tidal de-
formation is also possible in very thick oceans if forced at
much more rapid timescales. Tidal forces due to neigh-
boring moons contain a rich frequency-spectrum, some
of which may overlap the eigenfrequencies of a thick
subsurface ocean. We build upon [6] by exploring how
ocean dynamics alter the tidal Love numbers at high-
frequencies, what these can tell us about the thickness
of a subsurface ocean, and how they are affected by the
properties of the overlying ice shell. Additionally, we de-
rive analytical expressions for calculating resonant am-
plification of Love numbers and associated oceanic heat-
ing.

Method: We compute Love numbers in two steps.
Equilibrium tide theory is used first to calculate the
static Love numbers, which ignores any ocean dynamics.
These are then used to find the ocean’s tidal response,
which is subsequently used to modify the equilibrium
Love numbers to include ocean dynamics. In all calcula-
tions we consider tidal forces at integer multiples, q, of

a)

b)

Figure 1: Components of Europa’s deformation tidal
Love number at (a) the diurnal frequency and (b) ten
times the diurnal frequency. Analytical solutions are
shown as the dashed lines. The ice shell is 30 km thick
with a rigidity of 3.5 GPa and viscosity of 1014 Pa s.

the rotation frequency Ω, up to |q| = 40. This amounts
to tidal forces due to Jupiter and the neighbouring moons
as calculated in [6, 7].

Following [8, 9], the frequency-qΩ and spherical har-
monic degree-n and order-m tidal Love number may be
written as;

knmq = kTnmq + kPnmq

UP
nmq(rt)

UT
nmq

(1)

with an identical expression for hnmq . Here, UT and
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a) No ocean dynamics b) With ocean dynamics

Figure 2: Europa’s potential tidal Love number, k2q , across multiple different forcing frequencies, qΩ. Ocean dynam-
ics are ignored on the left (a) but included on the right (b). We assume a Maxwell viscoelastic rheology, rigidity of
µ = 3.5 GPa and viscosity of ν = 1014 Pa s in the ice shell, and linear drag coefficient α = 10−6 s−1 in the ocean.

UP are the tidal and pressure potentials, respectively,
kT is tidal Love number, and kP is the pressure Love
number. The second term on the right only exists in the
presence of ocean dynamics, and tends towards zero as
deformation-inducing tidal currents become negligible.
Both the kT and kP Love numbers are calculated with
equilibrium tide theory using the code LNTools devel-
oped by [4]. For Europa, we assume a simple three layer
interior structure with a Maxwellian viscoelastic crust,
fluid ocean, and mantle. Rheological properties are held
constant within each layer. Ocean and crustal thickness
are varied simultaneously to maintain a constant H2O
layer thickness of 150 km [10]. We follow [9] and com-
pute the pressure potential as;

UP
nmq(rt) =

gδηnmq − δhTnmqU
T
nmq

δhPnmq

(2)

where g is surface gravity, η is the radial ocean deforma-
tion, and δ represents the difference in these quantities
from ocean top to bottom (i.e., δη ≡ η(rt)− η(rb)). The
ocean’s deformation, coupled to the viscoelastic crust, is
found by solving the modified Laplace Tidal Equations
(LTE) using the methods of [8, 9, 11] with linear drag.

Results: As an example, the components of Eu-
ropa’s h2q at the diurnal (q = 1) and ten times the diurnal
(q = 10) frequency are shown in Figure 1. At the reso-
nant thickness, Hres, the imaginary component of h2q is
at a maximum, corresponding to a tidal phase lag of 45°
in accordance with classic tidal theory. If the ocean is
thicker than Hres the phase lag tends towards the value
controlled by the viscous portion of the ice shell. The
resonant thickness is much greater for the higher fre-
quency forcing. Away from the resonance, ocean dy-
namics become unimportant and the Love number tends
towards the value computed assuming equilibrium tide
theory. Our analytical solutions (dashed line) capture the

features of resonances well, although there is an offset
for the low-frequency case. The offset decreases as the
ocean thickness increases and is virtually absent in the
bottom panel. The analytical expressions are, therefore,
a useful way to include the effects of ocean dynamics
in most Love number calculations without numerically
solving the LTE.

A spectrum of Europa’s k2q is shown in Figure 2. We
see that high-frequency Love numbers can differ by or-
ders of magnitude if ocean dynamics are not taken into
account. Importantly, the Love number at each frequency
peaks at a different ocean thickness. Accurate determi-
nation of the tidal response at high-frequencies with an
orbiter or lander could, therefore, be used to constrain
the ocean thickness. Future work will also investigate
how ice shell and mantle properties affect the position of
the Love number peaks.
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