THE EVOLVING CRUST OF 4 VEST FROM COMPOSITIONAL AND THERMAL MODELLING.

J. T. Mitchell¹, A.G. Tomkins¹, C. Newton², and T. E. Johnson³, ¹Dept. of Earth Atmosphere & Environment, Monash University, Clayton VIC 3800, Australia (Jennifer.Mitchell@monash.edu), ²School of Physics & Astronomy, Monash University, Clayton VIC 3800, Australia, ³School of Earth & Planetary Sciences, Curtin University, Bentley WA 6102, Australia.

Introduction: A genetic relationship between diogenites and eucrites has long been argued, as has the magmatic evolution of Vesta. In a magma ocean scenario, large-scale mineral settling and fractionation creates an "onion-skin" structure where basaltic eucrites dominate the upper crust and grade down through cumulate eucrites and diogenites in the lower crust and mantle [1]. In a serial magmatism scenario, late-stage diogenite magmas intrude into the older eucrite crust, thickening it and developing a diverse range of lithologies [2]. Therefore, determining the petrogenesis of diogenites and eucrites is a key factor in developing our understanding of differentiated protoplanetary bodies.

We have combined compositional, thermodynamic, and thermal modelling to generate a model for the early evolution of Vesta, allowing us to refine the diogenite-eucrite relationship.

Methods: A continuation of pMELTS [3] modelling presented in [4] was carried out using adjusted bulk Vesta compositions to reflect the removal of 5, 10, 15, and 20% of a mean eucrite component from an initial Vestan mantle composition in order to satisfy the Ca-depletion observed in natural diogenite orthopyroxenes. The bulk composition that generated compositions most similar to natural diogenites was then used to create two P-T pseudosections in THERMOCALC [5] reflecting a primitive and evolved (post-eucrite extraction) Vesta. The above compositional modelling was further used to construct thermal evolution models of Vesta based on the decay of ²⁶Al and ⁶⁰Fe [6,7] for accretion at 0.5, 1.0, 1.25, 1.5, 1.75, 2.0, and 2.5 Myr after CAIs at T₀.

Results & Discussion: pMELTS modelling finds that the removal of 15-20% of a mean eucrite component from an initial Vestan mantle composition generates diogenites during a second stage of melting that better match natural compositions. THERMOCALC modelling suggests that diogenite melts required considerably hotter temperatures (>1340 °C) than eucrite magmas (<1240 °C). The extraction of an initial eucrite-like melt early in Vesta's history occurred at low % partial melting and would have transported the majority of the available ²⁶Al to the upper regions of Vesta

We suggest that this forms a hot stagnant lid that cools through convection and insulates Vesta's interior while temperatures increase until diogenite magmatism can begin. The decay of ²⁶Al in the crust and serial

eucrite magmatism may have also driven the thermal metamorphism observed in eucrite meteorites [8].

The thermal models also show that there is a delay in the onset of diogenite magmatism of >1 Myr after initial eucrite extraction. This is in keeping with a serial magmatism scenario and previously reported trace element data [9]. Diogenites therefore most likely represent late-stage crustal intrusions emplaced through a network of dykes [10] instead of cumulates from mineral settling in a global magma ocean. These intrusions would thicken the crust [11] and undergo fractional crystallization to produce the wide range of diogenite compositions observed in the meteorite collection.

Thermal models utilizing these temperature and compositional constraints suggest that Vesta accreted 1.5-1.75 Myr after CAI formation and that the timing of accretion is vital in the development and evolution of Vesta due to the changing abundance of 26 Al caused by its rapid decay. Earlier accretion results in temperatures high enough to generate a global magma ocean producing komatiite-like lithologies and an anorthosite crust which is not observed. Accretion ages after T_0 + 1.75 Myr are unable to reach temperatures that can produce diogenite lithologies. Our proposed accretion age is seemingly contemporaneous with the ureilite parent body [12], angrite parent body [13], and NWA 011 ungrouped basaltic achondrite parent body [14].

Therefore, the timing of accretion and the relative abundance of ²⁶Al is a controlling factor in the evolution of protoplanetary bodies.

References: [1] Righter, K. & Drake, M.J. (1997), Sci., Meteoritics & Planet. 32. [2] Yamaguchi A., et al., (2011), JGR., 116, E08009. [3] Ghiorso et al., (2002). [4] Mitchell, J.T. & Tomkins, A.G. (2019), GCA, 258, 37-49. [5] Powell, R. & Holland, T. (1988), JMG., 6, 173-204. [6] Mare, E.R. et al., (2014), Meteoritics & Planet. Sci., 49, 636-651. [7] Moskovitz, N. & Gaidos, E. (2011), Meteoritics & Planet. Sci., 46, 903-918. [8] Yamaguchi, A., et al., (1996), Icarus, 124, 97-112. [9] Barrat J.-A., et al., (2008), Meteoritics & Planet. Sci., 43, 1759-1775. [10] Wilson, L. & Keil, K., (2012), Chemie der Erde, 72, 289-321. [11] Clenet, H., et al., (2014), Nature, 511, 303-306 [12] Budde, G., et al., (2015), EPSL, 430, 316-325. [13] Kleine, K., et al., (2012), GCA, 84, 186-203. [14] Sugiura, N. & Fujiya, W. (2014), Meteoritics & Planet. Sci., 49, 772-787.