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Introduction:  The SuperCam instrument on the 

Mars 2020 rover is capable of performing imaging (re-
mote micro-imager or RMI), active spectroscopy (laser 
induced breakdown spectroscopy or LIBS, Raman, & 
time resolved luminescence or TRLS), & passive reflec-
tance spectroscopy in two wavelength ranges, visible 
(VIS) & infrared (IR) [1, 2]. 

The Body Unit (BU) contains two Czerny-Turner 
spectrometers covering the UV (~244-341 nm) & VIO-
let (~379-465 nm) regions & a transmission spectrome-
ter (TS) using an intensified CCD in the green (~533-
620 nm), orange (~620-714 nm), & red (~714-853 nm) 
regions. These spectrometers are used for LIBS, Raman, 
TRLS, & VIS reflectance measurements. 

Here, we present the results of the optical character-
ization of SuperCam including wavelength calibration, 
instrument response function, & spectral resolution. 

SuperCam uses a number of parameters to control 
the amount of light collected: 1) the number of rows of 
the CCDs that are integrated for the UV & VIO CCDs 
& for the red region of the TS CCD (the rows in the 
green & orange regions are fixed); 2) the UV & VIO 
spectrometers do not have a shutter, we can control the 
integration time of their CCDs while for the TS, the in-
tensifier acts as a shutter, & the “intensifier open time” 
or “gate” controls how long light is permitted to pass; 3) 
we can control the intensifier gain. Each of these set-
tings required separate characterization.  

Methods:  Optical characterization of the instru-
ment was conducted in the cleanroom at JPL’s Space-
craft Assembly Facility in August & December 2019 af-
ter SuperCam had been integrated into the rover. The 
characterization was performed by collecting measure-
ments of two calibrated light sources: a Hamamatsu EQ-
99 laser-driven light source (EQ-99) & a Labsphere 
USS-1200 integrating sphere light source (LS).  

August 2019: We collected 60 observations over a 
range of settings. Only the EQ-99 was used – 30 obser-
vations were of that light source, & 30 were observa-
tions of a black anodized aluminum plate placed in front 
of the light source with lowered room lights. The EQ-
99 was placed at a distance of 10.02 m. Observations 
were collected in sets of 10. First, 5 observations of the 
light source (the “lights”) with the integration time in-
creasing each time, then 5 observations of the black 
plate (the “darks”) with the same settings as the preced-
ing lights. The 6 sets of 10 observations were grouped 

by UV/VIO row & TS gain settings. Data were collected 
for 16 & 200 row integrations in the UV & VIO, 70 & 
200 row integrations for the red region of the TS, & in-
tensifier gains of 2300, 2500, 2900, 3200, & 3500 (ar-
bitrary units). UV/VIO integration times ranged from 
0.512 to 10 ms & TS gate times from 0.5 to 20 µs. 

December 2019: In similar fashion, we collected 86 
observations. These consisted of 43 pairs of lights & 
darks, with 10 pairs observing the LS, & 33 pairs ob-
serving the EQ-99. Both lamps were placed at a distance 
of 5.01 m. The LS produces insufficient light in the UV 
region to be useful. Observations of the LS were col-
lected with 200 rows integrated in the VIO & 70 rows 
in the red region of the TS. VIO integration times ranged 
from 5.02 to 200 ms, & TS gate times ranged from 5-
500 µs. Two intensifier gains were used: 2500 & 3200. 
For the EQ-99 observations, 16, 40, & 200 rows were 
integrated for the UV/VIO, & 70 & 200 rows were inte-
grated for the red region in the TS. Integration times for 
the UV/VIO were 5.12-10 ms, & the TS intensifier gate 
ranged from 0.1-200 µs & gains of 2300, 2500, 2900, & 
3200 were used. 

Difference of Differences Technique: Since the UV 
& VIO spectrometers lack shutters, they collect signal 
during CCD readout. To remove the portion of the sig-
nal collected after the end of integration, we employ a 
technique we refer to as the “difference of differences.” 
We take two light/dark pairs with identical settings ex-
cept for the integration time. The darks are subtracted 
from the lights to remove the portion of the signal from 
the dark current. Next we subtract the dark-corrected 
observation with a shorter integration time from the 
longer. This results in the remaining signal consisting 
only of the signal accumulated during the difference in 
integration times. 

Wavelength Calibration: The pixel to wavelength 
mapping for each CCD was determined using a LIBS 
observation of the SCCT titanium reference [3] col-
lected during the System Thermal Test in October 2019. 
Observed peaks were matched with known Ti emission 
lines & a wavelength calibration derived from their dis-
tribution. The spectral bin width was determined from 
this wavelength calibration by assuming that each pixel 
had a wavelength bin width equal to half the distance to 
the center of each neighboring pixel. 

Instrument Response Function: The instrument re-
sponse function (IRF) maps the signal collected on the 
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CCDs to the number of photons incident on the tele-
scope. We predict the number of photons from the light 
source that should be incident on the telescope based on 
the calibration data, observation geometry, & integra-
tion/gate time. Dividing the number of photons by the 
difference of differences corrected signal (DN) yields 
the expected instrument sensitivity in Photons/DN at 
each wavelength. 

Results: The UV IRFs are presented in Figure 1. 
The VIO IRFs are presented in Figure 2. The TS IRFs 
are presented in Figure 3. The UV & VIO spectral bin 
widths are presented in Figure 4. The TS spectral bin 
width is presented in Figure 5. 

The wavelength ranges with sufficient signal & res-
olution to be used during surface operations are 243.75-
341.23 nm for the UV, 379.20-464.53 nm for the VIO, 
533.34-619.93 nm for the green, 620.20-713.68 nm for 
the orange, & 713.69-852.76 nm for the red. 
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Figure 1. UV IRF for 16, 40, & 200 Rows. 

 
Figure 2. VIO IRF for 16, 40, & 200 Rows. 

 
Figure 3. TS IRFs for 2500 & 3200 gains planned 

for LIBS & Raman, with 70 rows in the red region. 

 
Figure 4. UV & VIO spectral bin widths. 

 
Figure 5. TS spectral bin widths. Gray areas show 

full range of data from CCD, colored areas show regions 
expected for use in surface ops. 
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