
A MULTI-WAVELENGTH STUDY OF MERCURY’S POLAR ANOMALIES: NEW DATA FROM ARECIBO
INFORMED BY MESSENGER H. Meyer1, E. G. Rivera-Valentı́n2, and N. Chabot1, 1Johns Hopkins University
Applied Physics Laboratory, Laurel, MD (Heather.Meyer@jhuapl.edu), 2Lunar and Planetary Institute, USRA,
Houston, TX

Introduction: Prior to the arrival of the MESSEN-
GER spacecraft at Mercury, repeat observations of
Mercury’s polar regions by the Arecibo Observatory
(AO) and Goldstone Solar System Radar with the Very
Large Array revealed radar-bright features within po-
lar craters consistent with ice deposits [e.g., 1-4 and
refs therein]. MESSENGER observations, particularly
data from Mercury Laser Altimeter (MLA) and Mercury
Dual Imaging System (MDIS), confirmed that these
polar anomalies are located in regions of permanent
shadow (PSRs) and exhibit surface reflectance values
indicative of both exposed surficial ice and lag-deposits
of potentially organic-rich volatiles [5-7].

Recent work by [8] further suggests that low-
reflectance surfaces associated with PSRs extend
beyond the strict limits of the PSRs into dimly lit
regions of polar craters, where complex organic com-
pounds can remain stable. A recent campaign by the
Arecibo Observatory to improve imaging of Mercury’s
north polar region provides a new opportunity to assess
the distribution of volatiles at Mercury informed by
the wealth of new knowledge resulting from the MES-
SENGER mission. This work builds on the analyses by
Rivera-Valentı́n et al. (2021) [9], who used machine
learning algorithms to identify small scale variations
in radar backscatter. Their work demonstrated that the
north polar anomalies are not homogeneous and that
differences, perhaps due to burial depth and relative
ice abundance, can be discerned from S-band radar
observations over several days [9]. Here, informed
by MDIS and MLA data, we continue their k-means
clustering analysis to assess the finer-scale variations
observed in S-band backscatter data, validate the ma-
chine learning method against geologic observations,
and further characterize Mercury’s polar ice deposits.

Data and Methods: We use new Arecibo S-band
(12.6 cm; 2380 MHz) radar observations of Mercury
taken during the 2019 and 2020 inferior conjunctions,
the first taken of Mercury’s north pole since MESSEN-
GER visited Mercury. As detailed in [9], we used the
long-code delay-Doppler radar imaging method [10] to
produce delay-Doppler images of Mercury in both the
opposite circular (OC) and same circular (SC) polar-
ization as transmitted. Radar images were then trans-
formed to hermiocentric coordinates and projected into
a polar stereographic map using standard techniques
[11-12]. To assess local-scale variations in the radar-
scattering properties of the individual deposits, we em-
ployed an unsupervised k-means clustering algorithm

Figure 1: A 2 km/pixel k-means map for the north polar re-
gion of Mercury of S-band radar SC backscatter from [9]. Yel-
low indicates the highest k-means class, denoting the strongest
backscatter signal, with green and blue denoting the next two
classes below, respectively.

using the CH index [13]. This technique clusters data
into groups that are then represented by their clus-
ter mean and standard deviation. This allows for a
direct and robust pixel-by-pixel comparison of radar
backscatter across polar deposits. Although the radar
imaging would at best allow for a resolution of 750
m/pixel, in order to increase the SNR for our analysis,
the base radar image used for the k-means clustering is
2 km/pixel.

In [9], the k-means clustering algorithm was used over
the entire radar image to identify signal that was ro-
bustly distinguishable from noise and to study its spatial
variation. Here, we further the technique by clustering
only those data points that are robustly distinguishable
from noise, i.e., by taking the signal from the top two
k-means classes from [9] and applying the same clus-
tering analysis to only that signal. This allows us to
study the small-scale local variation in radar backscat-
tering within the polar deposits and discern finer details
within the areas of strongest SC backscatter. The k-
means maps were then compared to the radar observa-
tions by Harmon et al. (2011) [4] and to the local ge-
ology using MLA 1064-nm reflectance measurements
[5] and MDIS mosaics [14], with particular attention to
craters that exhibit anomalous MLA reflectance [5].

Analysis: Overall, locations identified by k-means
clustering as robust signal for a given day is consistent
with earlier radar observations [3] (Fig. 1). The clus-
ter maps over the SC backscatter radar images summed
over the six-day observing runs show more extensive
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Figure 2: Laxness crater (⇠26 km in diameter) (top left) pre-
MESSENGER AO S-band backscatter [3], (top right) MLA
1064 nm reflectance (red�0.3, yellow=0.2-0.3, green=0.1-
0.2, and blue0.1 after [15]) overlain on an MDIS mosaic
with the extent of the PSR shown in white, (bottom left) the
k-means map for the July 19, 2019 SC backscatter observa-
tion from AO, (bottom right) and the k-means map for the SC
backscatter radar image summed over the entire 2019 observ-
ing run. k-means classes identical to Fig. 1.

radar bright signatures than previous work (see bot-
tom right panel of Fig. 2). The areas of strongest SC
backscatter (yellow class) are co-located with the inner-
most sections of PSRs as defined by [15]. Lower classes
(i.e., greens and blues) are associated with crater walls,
central peaks, and the edges of the PSRs. These ar-
eas receive more secondary illumination, so the lower
classes are consistent with the interpretation that ice is
less stable in these areas. This is consistent with the
overall interpretation from [9]. Here, finer-scale vari-
ations are more immediately identifiable and closely
align to the margins of PSRs.

In the case of Laxness crater (Fig. 2), previous ob-
servations indicated that Laxness exhibits low MLA re-
flectance (top right), but is radar bright [3] (top left).
Our k-means analysis demonstrates that while the PSR
in Laxness remains radar bright as of 2019 (bottom left
and right), it exhibits variations consistent with the vari-
ation in secondary illumination. The yellow (strongest)
class is observed in the innermost part of the PSR. Of
note, the blue class in particular corresponds not only to
the margin of the PSR and nearby slopes, but also to the
edge of the low reflectance zone observed in MLA. This
confirms previous interpretations that the ice present
in the Laxness PSR is buried beneath a thin, low re-
flectance overburden. Given that the area is radar-bright
in S-band, the deposit should be within the upper ⇠1 m
of the surface.

On the other hand, the Prokofiev PSR exhibits over-
all lower k-means classes and sparse robust signal in
its floor, despite the high reflectance observed by MLA.
This association of radar bright deposits with high re-
flectance is only observed for a few very small locations
within PSRs that also exhibit high (yellow or green) k-
means classes and none with reflectance values as high
as at Prokofiev. The preponderance of lower classes
within Prokofiev may indicate a lower abundance of
near-surface ice, potentially a thin surficial layer. When
considered in conjunction with MLA observations, it
may also indicate that the PSR has been gardened suf-
ficiently to expose ice at the surface and to remove the
bulk of the subsurface ice from this PSR. Alternatively,
if the Prokofiev PSR never trapped the same quantity of
volatiles observed within its neighbors (including two
small craters in the Prokofiev floor and one small crater
just outside Prokofiev), then it may be possible to use
the differences in SC backscatter to put constraints on
the timing and/or origins of the polar volatiles.

Conclusions: We used new S-band Arecibo plane-
tary radar observations along with machine learning al-
gorithms to discern fine-scale features within Mercury’s
polar deposits. In tandem with MESSENGER MLA and
MDIS data, our analysis indicates that local-scale vari-
ations may be associated with higher concentrations of
ice both across individual deposits due to local environ-
mental factors and relative to other polar PSRs. Addi-
tionally, our analysis supports previous work suggest-
ing that deposits such as Laxness, which exhibit anoma-
lously low MLA 1064 nm reflectance, still retain high
concentrations of ice in the upper meter of the surface.
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