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Introduction: Counting craters is a key aspect in 

determining relative chronologies of different surfaces 

on terrestrial bodies. The technique has proven useful in 

building geological histories and establishing model 

ages of geological events on the Moon, Mars, and 

asteroids [1]. 

For the Moon, some surfaces have radiometric ages, 

determined from the collected samples obtained via the 

Apollo, Luna, and soon, Chang-e missions. Though 

those samples are local and linked to specific events, 

meaning they cannot be viably be attributed to 

chronologies on a global scale [2]. Crater counting 

offers a practical solution for acquiring global 

chronologies and targeting locations yet to be visited by 

sample collecting missions.  

The ability to count craters has continuously 

improved over the years, through higher quality images 

and spacecraft technologies. Ultimately, the accuracy of 

the technique is governed by two aspects: counting area 

and image resolution. 

The current lunar global high-resolution crater 

dataset has manually counted ~1.3 million craters down 

to 1km in diameter [2]. To date young and/or small 

surfaces, the ability to detect craters smaller than 1km is 

required. The LROC NAC images are high-resolution 

(0.5-2 m/px) with nearly global coverage, making them 

the ideal dataset for the identification of craters down to 

~10m in diameter. But because crater sizes scales as a 

power law, the number of impact craters in the size 

range 10 m to 1 km is in the hundreds of millions, 

making automation of this process key to the continued 

use of this technique [3]. 

Our group developed for Mars (with proven success 

[3,4]), and is now adapting to the moon, a machine-

learning based CNN (Convolutional Neural Network) 

Crater Detection Algorithm (CDA), which makes the 

crater counting task on high-resolution images many 

magnitudes faster. We will show and discuss the current 

implementation of crater detection algorithm on 

different lunar surfaces using the high-resolution NAC 

images. 

 

The Crater Detection Algorithm: Morphologies of 

impact craters on the Moon and Mars are different, 

mostly due to differences in target properties and 

surface conditions. Therefore, our Mars-trained library 

cannot be used.  A new training set is therefore a 

prerequisite to accurately detect and estimate crater 

diameter using lunar imagery. This entails feeding the 

algorithm a dataset of manually identified and mapped 

craters, which is uses for training and validation.  

The current CDA model for the Moon was trained 

on 152 square (414x416 pixels), tiled NAC images 

which consist of 25,973 manually counted craters. All 

the images have incidence angles ranging from 50-85° 

(afternoon/morning lighting) which produces favorable 

shadows detailing the surface texture/craters. The 

algorithm uses an architecture called You Only Look 

Once (YOLOv3) [5], which specializes in fast object 

detection. 

 

The NAC Image Dataset: The LROC-NAC images 

give us the high-resolution detail (0.5-2m/px) to count 

decimeter sized craters. Though the NAC images are 

publicly available [6], they are not in the correct format 

for our proposes. For our model to work they need to be 

in a GeoTiff file format. This has been done by adapting 

a series of USGS ISIS3 and GDAL scripts to batch 

georeference 1000s of NAC images and outputs them in 

a GeoTiff format.  

 

Initial Results of the CDA: The CDA was run on 

two georeferenced NAC images, respectively covering 

a portion of Mare Serenitatis (NAC: M1320016983LE) 

and Terra Sanitatis (NAC: M1338833866LE). The 

NACs were analyzed at their highest resolution in order 

to detect the smallest craters possible. However, our 

approach allows the detection of larger craters by 

downsampling the resolution of the image [4], a task we 

used in our Mars crater counting pipeline. Results are 

presented in figure 1. 

On the highland surface it detected 406,447 craters 

in ~3 mins. The smallest craters detected are 5m in 

diameter and largest at 270m, and the image has an area 

150 km2.  On the mare surface it detected 419,950 

craters in ~4 mins. The smallest craters detected are 6m 

in diameter and the largest also at 270m with an image 

area 210 km2. Over the span of ~7 mins the CDA was 

able to detect ~820,000 craters smaller than 300m over 

360km2 area. 

To test the accuracy of the CDA in detecting fresh 

crater morphologies, 291 craters with clear rims, 
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circular shapes and diameters of 4m-92m were 

manually marked over 860m2 area of Terra Sanitatis 

(M1338833866LE). Then the results of the CDA over 

the same area were compared to the manual count. 286 

(~98%) of the 291 chosen craters were detected by the 

CDA, which means within our test dataset the CDA 

performed outstandingly at detecting non-degraded  

craters.  

However, the model did struggle at detecting 

degraded craters over the same area. 456 degraded 

craters, with diameters of 6m-78m, were marked, where 

the CDA was only able to detect 302 of them (~66%). 

However, this result was not unexpected when 

compared to human detection variability, where 

analysts vary by ~80% on different levels of crater 

degradation [7]. 
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Figure 1: Location and corresponding CSFD histograms of the CDA’s detections; a. excerpt of NAC image 

M1320016983LE (mare surface); b. excerpt of NAC image M1338833866LE (highland surface).  
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