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Introduction:  Manganese is an important element 

for elucidating past habitability, pH, and redox, of wa-
ter on ancient Mars [1–4]. The ChemCam Laser In-
duced Breakdown Spectroscopy (LIBS) instrument 
onboard the NASA Curiosity rover can measure the 
elemental composition of targets on Mars [5–7]. Man-
ganese, like other transition metal elements, has many 
atomic emission lines in the range of the ChemCam 
LIBS spectrometers. The Mn emission lines at 403 nm 
have been used in the past to produce a univariate 
model for Mn quantification [2,8]. Here, we have pro-
duced a multivariate model that seeks to improve on 
the accuracy of bedrock MnO compositions by using 
an expanded dataset of 428 standards. The multivariate 
model uses Partial Least Squares (PLS) and Least Ab-
solute Shrinkage and Selection Operator (LASSO) 
multivariate techniques with blended sub-models [9].  

Methods:  Data Collection and Pre-processing. A 
standard set consisting of 428 standards was analyzed 
using the ChemCam engineering model at LANL from 
1.6 m distance (5 average spectra were collected on 
each standard consisting of 50 shots averaged in each 
point) under a Mars-like atmosphere. The standard set 
covers a range of Mn compositions from 27 ppm to 
~100% Mn (pure Mn metal) and contains a variety of 
rock matrices (e.g., rock, mineral, Mn ores, and syn-
thetic materials). We use the Python Hyperspectral 
Analysis Tool [10] and the associated graphical inter-
face for point spectra analysis [10] to preprocess the 
data and evaluate multivariate regression models. Each 
spectrum is normalized by the sum of the total emis-
sion for each spectrometer [e.g., 7]. A “peak area” 
(PA) preprocessing technique is used [e.g., 11], where-
in an algorithm finds the local minima and maxima of 
the average spectra of the dataset. The process then 
bins the emission between each pair of minima and 
assigns the result to the wavelength of the correspond-
ing maximum. Thus, the total number of channels is 
reduced by ~10x, speeding up processing time. 

Multivariate Models.  The dataset was split into 5 
folds of similar distributions of MnO content, 1 was 
held out as the test set, and the other 4 were used for 
cross validation and the training set. PLS and LASSO 
techniques were found to be the best types of models 
to use via cross validation analysis. Submodels for 
PLS and LASSO were trained for the full range of 
data, 0–10 wt.% MnO, and 0–1 wt.% MnO. The 

blending of the submodels are optimized on the train-
ing set. The test set is used to evaluate the accuracy of 
the optimized models on novel data, and accuracy is 
quantified using root mean squared error of prediction 
(RMSEP). 

A two-tiered or “double blending” model was used. 
At the first stage, a PLS full distribution model is used 
to select between the low 0–10 wt.% MnO LASSO 
model and the full LASSO model. This initial blended 
model is then used to select between a lower 0–1 wt.% 
MnO and itself as a full model. 

A local RMSEP method was used to evaluate 
RMSEP for each predicted MnO value based on the 
nearest 40 test set samples, and then smoothed. The 
smoothed local accuracy is more representative of the 
model performance than a single full model RMSEP 
value. This method can be used to estimate  the quanti-
fication limit, as the point where the local RMSEP is 
indistinguishable from zero, i.e., where the predicted 
value is greater than the sum of the local RMSEP val-
ue and the local RMSEP of the predicted value. 

Precision is estimated by taking the standard devia-
tion of each test set prediction of a standard (5 predic-
tions per standard excluding outliers).  

 
Fig 1: Test Set predictions of the multivariate model 

compared to a 1:1 line on a log scale plot. 
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Results:  The results for some of the cross valida-
tion are summarized in Table 1, and the Test Set is 
shown in Figure 1. The full double blended model 
RMSEP accuracy is 1.39 wt.% MnO and an average 
precision of 0.2 wt% MnO (both 1σ). These mean val-
ues do not fully reflect the model performance, and the 
local RMSEP accuracy is shown in Figure 2. The local 
RMSEP accuracy and precision scales with MnO 
abundance, resulting in a model accuracy of 0.03 wt.% 
at the quantification limit (0.05 wt.% MnO), and other 
values are listed in Table 2. 

 
Fig 2: The local RMSEP based on 40 nearest test set 
predictions (squares) and smoothed curve for values 

>5 wt.% MnO (black curve). 

Discussion:  We have applied this model to Mars 
data as a sanity check. This analysis found that the 
obtained abundances scale with Mn peak intensity of 
the known Mn features in the LIBS spectra. The new 
abundance values for MnO, compared to the model 
developed in [2], are ~40 rel.% lower. Figure 3 shows 
the distribution of new MnO predictions using the 
double blended model for Mars targets up to sol 2729, 
showing that 95% of all Mars data lies in within the 0–
0.22 wt.% MnO range. The highest values predicted 
from Mars data range up to ~22 wt.% MnO. 
 

Conclusions:  This new robust multivariate model 
validated with laboratory data has improved accuracy 
for MnO predictions of ChemCam data for the Curios-
ity rover compared to previous methods [2,8]. The 
improvements, especially for values <0.4 wt.% MnO 
where the RMSEP accuracy is ≤0.08 wt.% MnO and 
precision is ≤0.05 wt.% MnO, will help with distin-
guishing the variations in MnO within the typical bed-
rock within Gale crater and help with interpretations of 
data from Mars. 
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Fig 3: Histogram of MnO abundance for Mars targets 

up to sol 2729.

Table 1: Summary of Root Mean Square Error of Cross Vali-
dation (RMSECV) for some of the models tested. 

Model Range 
(MnO wt.%) Method RMSECV Alpha/Fold 

Full LASSO 2.486 8.43E-5 
Full PLS 2.620 15 
0-10 LASSO 0.296 4.53E-5 

0-1 LASSO 0.066 5.93E-6 
 

Table 2: Estimated accuracy and precision for selected MnO 
(wt.%) compositions, all 1σ. 

Abundance RMSEP Accuracy Precision 
0.05 0.03 0.01 

0.1 0.05 0.02 
0.4 0.1 0.05 
1.0 0.4 0.09 

100 4.4 2.1 
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