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Introduction

The Galilean satellites with icy surfaces (Ganymede, Callisto,
Europa) are host to a variety of large impact features that are,
if not unique to these bodies, rarely encountered on planetary
and satellite surfaces in the Solar System. These features in-
clude impact basins with central pits, domes, and so-called
“penepalimpsests” and “palimpsests” in the terminology of
Schenket al. 2004. Our project seeks to establish the ef-
fects of several factors in explaining the origin and evolution
of these features. In particular we aim to establish the roles
played by: 1) the presence or absence of liquid water (at depth
below the surface, or generated during the impact) vs warm ice
(again, either pre-existing or impact-generated), 2) the litho-
spheric temperature gradient, 3) surface gravity (as compared
to smaller gravity on mid-sized satellites, where the features of
interest are not found, and finally 4) the role of the characteris-
tics of the impactor: specifically, the impactor’s size, velocity,
composition, and the angle of the impact.

This abstract describes work carried out by the author (Ko-
rycansky) who is the project PI. In particular we describe work
towards modeling crater relaxation using a multi-fluid Stokes-
flow program that we are developing. The goal of the work is
to complement our other efforts in crater modeling and to un-
derstand how various target rheologies and structures influence
crater relaxation. In this we follow the precedent of Ivanovand
Kostuchenko (1997), who used a free-surface fluid-dynamics
code combined with models for post-impact acoustic fluidiza-
tion to test ideas about impact crater morphology.

The program follows the methodology described by Schmel-
ing and Marquardt (1991) and Weinberg and Schmeling (1992).
We use a stream-function formulation in the high-viscosity
limit of the incompressible Navier-Stokes equation in two-
dimensional cartesian coordinates (x,z). The time-dependent
and inertial terms of the equations are neglected, so that buoy-
ancy terms (resulting from density differences in a gravitational
field) are balanced by viscous terms, which determines the flow
field. Time evolution then occurs by material movement via
the continuity equation. Substitution of the stream function ψ
into the viscous terms of the Navier-Stokes equation and taking
the curl results in a elliptic-type fourth-order partial differential
equation for the stream function:
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whereρ is the density of the fluid,gz the vertical gravity, and
η is the dynamic viscosity. Note that the equation may be non-
linear if η is a function of the stream function or its derivatives,
as may be the case for a power-law fluid where the viscosity is
a function of the strain-tensor product.
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Figure 1: Sample calculation for Stokes stream function pro-
gram. The calculation models the sinking of a highly viscous
block into less dense, less viscous fluid, below a low-density
“atmosphere”. Marker particles (yellow, green, blue) showthe
placement of three fluids. Three fluids are involved: 1) low-
density, low-viscosity fluid (yellow markers)ρ1 = 1, η1 = 1
(kinematic viscosityν1 = η1/ρ1 = 1), 2) high-density, high-
viscosity fluid (green markers)ρ2 = 90,η2 = 9.0×103 (kine-
matic viscosityν2 = η2/ρ2 = 100), and 3) high-density, very-
high-viscosity fluid (blue markers)ρ3 = 102, η3 = 1.0×106

(kinematic viscosityν3 = η3/ρ3 = 104). The background grid
(not shown) is 50×50 in size and the total number of markers
is 4×104. The vertical gravityg = 1, so the highest-density
fluid slowly sinks and eventually spreads at the bottom imper-
meable free-slip boundary.

The continuity equation is solved via Lagrangian marker
particles whose positions are updated by movement according
to the velocity field. Labeling particles with different types
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allows the use of multiple fluids with differing properties such
as density or viscosity. In this formulation, the entire numerical
grid is filled, so there is no free surface as such, but large density
contrasts (e.g. 1000 to 1) can serve the same purpose. Non-
Newtonian fluids can be included via non-constant effective
viscosity that is a function of the strain tensor product or other
fluid quantities.

Numerical solution of the stream function equation is car-
ried out by first discretizing on a grid, resulting in a linear
systemAx=b, whereA is the coefficient matrix,b is a vector
of the right-hand side terms of the stream function equation
andx is the solution vector of the stream function on the grid.
The coefficient matrixA is sparse and symmetric, and can
be written via Cholesky decomposition as the productLL T ,
whereL is a (still relatively sparse) banded lower triangular
matrix andLT is its transpose. Efficient solution via Cholesky
decomposition allows for feasible iteration schemes when the
viscosityη is a function of the strain product, but it is appar-
ently often the case that the most straightforward Picard-type
iteration schemes converge slowly or result in non-converging
oscillations (Izmail-Zadeh and Tackley 2010). For the mo-
ment we will present some qualitative results where cases in
which the viscosity is a function of fluid-type only. Figure 1
shows an example of the settling of a slightly higher-density
viscous block (ρ = 102, dynamic viscosityη = 106). into
the background of slightly lower density, less viscous fluid.
(ρ = 90, η = 9× 103). Above both fluids is a low-density,
low-viscosity fluid (ρ = 1, η = 1) that approximately models a
free-surface interface (so-called “sticky air”, Izmail-Zadeh and
Tackley 2010). The background grid (not shown) is 50×50 in
size and the total number of markers is 4×104.

Present status

At the time of writing, we have developed a working mul-
tifluid program. As with previous papers mentioned above,

the program is coded for two-dimensional flow in cartesian
coordinates. Development for two-dimensional axisymmetric
cylindrical coordinates is ongoing; the matrix coefficients for
the axisymmetric stream function equation are complicated but
incorporating them into the cylindrical coordinate version of the
code is eminently feasible. More challenging may be the devel-
opment of a robust iteration scheme for the implementation of
non-Newtonian viscosity that will allow consistent calculation
of rheologies that can model physical processes like acoustic
fluidization or other complex behavior that occurs during crater
relaxation on medium to long timescales (Melosh 1989). Pre-
liminary tests with non-iterative scheme (where the viscosity
is determined by the flow field previous timestep) show that a
simple scheme may not be adequate for these calculations.
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