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Introduction: The relative concentrations of ele-
ments in the silicate mantles of planetary bodies pro-
vide clues to their accretion history. Moderately vola-
tile elements (MVEs) are depleted relative to refractory
elements with similar chemical affinities, suggesting
either loss or incomplete condensation [1]. However,
there is no consensus on when this difference arose: in
the nebular phase [2]; during planetesimal growth [3];
or after accretion was mostly complete [4].

Evaporative loss of MVEs during planetesimal
growth is consistent with small excesses of isotopically
heavy Mg and Si in the Earth [5,6]. The absence of K
isotopic fractionation [7] is explained by total loss fol-
lowed by late delivery of chondritic K [5].

However, the pattern of MVE depletion in plane-
tary bodies does not in general resemble that expected
from experimental measurements. Sossi et al. [8] sug-
gested that the depletion patterns are the result of mix-
ing between depleted and undepleted reservoirs; below
we provide a quantitative analysis of this suggestion in
the context of N-body accretion simulations.

MVE Depletion Patterns: Figure 1 below shows
the elemental depletion patterns relative to chondritic
for different planetary mantles. The order of elements
is approximately that of their 50% condensation tem-
peratures, showing that more volatile elements are
more depleted. We focus below on lithophile elements
because siderophile elements suffer from the additional
complication of removal to the core [9].
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Figure 1. Selected elemental depletion patterns for dif-
ferent bodies (APB=angrite parent body). Sources:[10]-[13].

Modeling Evaporative Loss: Sossi et al. [8] car-
ried out experiments tracking the evaporative loss of
elements from silicate melts at different temperatures
T. Figure 2a reproduces their results and shows that the
fraction of element remaining is a very strong function
of temperature: to a good approximation, at a particular
temperature elements are either completely retained or

almost entirely depleted. A similar result holds true if
oxygen fugacity (fO,) rather than 7 is varied.

This experimental result, however, is very different
from what is observed in planetary mantles. Rather
than a sharp cutoff, for Earth and Mars there is instead
a relatively gradual decrease in concentration with
increasing volatility (Fig 1). [8] explain this disagree-
ment by appealing to a mixture of two precursor mate-
rials with different degrees of volatile depletion.
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Figure 2. a) Predicted fraction of element remaining as a
function of temperature using the method of [8] and with fO,
fixed to QFM. b) Comparison of observed bulk silicate Earth
concentrations (Fig 1) with one- and two-temperature fits at
fixed fO,. For the single-temperature fit 7=1573 K.

To investigate this idea, we adopt the methods of
[8] and find the combination of 7" and fO, which pro-
vide the best fit to the Earth’s lithophile element con-
centrations (Fig 1). Fig 2b shows the result (red dashed
line): the single-temperature fit fails to reproduce the
more volatile MVEs. This result agrees with [8].

We next investigated a two-temperature fit. This
provides a much better match to the observations (blue
line) and consists of 85% of a high-T material and 15%
of a low-T material. A recent study of Mg and Si iso-
topes concluded that the Earth consisted of ~25% low-
T material [6].

Figure 3a shows the result of a similar exercise for
Mars, again demonstrating the failure of the single-T
model. In this case, the low-T material comprises 20%
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of the total. In contrast, for Vesta (Fig 3b) a single-T
model provides a good match to the observations. This
makes sense: Vesta, being much smaller, probably
accreted material from a restricted region while Mars
and Earth acquired material from a variety of sources.
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Figure 3. a) As for Fig 2b but for Mars with an fO, of 10™.
Best-fit two-component model has 71=1423 K, 7,=1623 K
and a low-T fraction of 20%. b) As for a) but for Vesta. Sin-
gle-component fit has 7=1523 K and fO, = 3 x10™*. Ele-
mental concentrations are from Fig 1.

Of course, assuming that there are only two reser-
voirs, each characterized by a single effective evapora-
tion temperature 7 is an oversimplification. Further-
more, fO, is also likely to vary between reservoirs.
Nonetheless, this very simple model provides a starting
point for testing the Sossi et al. hypothesis with N-
body accretion models.

N-body Simulations: Although not the only pos-
sibility, it seems likely that the precursor material vola-
tile content is controlled by initial distance from the
Sun. For a two-7 model we can then just assume a crit-
ical distance separating these two reservoirs. This al-
lows us to use N-body accretion codes to track how the
two reservoirs are mixed into the final planets. Such
mixing studies have been done before, e.g. for oxygen
isotopes [14] and Mo/Ru isotopes [15].

Figure 4a shows the evolution of planetary mass
and fraction of low-7 material as a function of time for
an Earth-analog planet from the simulations of [16].
Here the high-7/low-T boundary is set at 1.8 AU. The
low-T fraction increases over time, because in these
models the feeding zone of the planet expands out-
wards with time [15]. The final low-T fraction of 20%
resembles that found for the Earth in Fig 2b.
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Figure 4. a) Evolution of planet mass and fraction of
low-T material as a function of time. N-body simulation is
CJS1 from [16]. Boundary between high-7 and low-T" mate-
rial set at 1.8 AU. b) Final planet semi-major axis and low-7'
fraction from four CJS simulations (open circles), compared
with inferred values for Earth and Mars. Gray-shaded circle
is planet from Fig 4a. Circle size scales with the square root
of planet mass.

Figure 4b shows the outcome for planets in multi-
ple simulations, compared with the inferred Earth and
Mars values. As expected, the larger the final semi-
major axis of the planet, the higher the fraction of low-
T material, although there is considerable scatter. A
boundary location inwards of 1.8 AU results in planets
with too large a fraction of low-7 material.

Conclusions: This preliminary work shows that
radial mixing of a low-T and a high-T component can
explain the MVE patterns in Earth and Mars. For the
CJS accretion models, the boundary between these two
components is at 1.8 AU or more, suggesting volatile-
rich planetesimals only survived beyond this distance.
Future work includes exploring other accretion scenar-
ios (e.g. the Grand Tack [17]) and incorporating the
effect of core partitioning.
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