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Introduction: Pairwise collisional growth of dust 

aggregates is the first step of planet formation. The 

stickiness and collisional behavior of dust particles and 

aggregates have been studied [e.g., 1−3].  It is known 

that particles/aggregates composed of H2O ice are 

generally stickier than rocky particles/aggregates [e.g., 

4]. This difference plays an important role in models of 

dust evolution and planetesimal formation in the inner 

a few au of circumstellar disks [e.g., 5].  

In the cold outer region of circumstellar disks, not 

only H2O ice but also CO and/or CO2 ices are 

important constituents of icy dust particles [e.g., 6]. 

Therefore, the stickiness of CO2 ice particles may be of 

great importance for understanding the dust growth 

and radial drift behavior in circumstellar disks.  

Laboratory experiments [7,8] revealed that CO2 ice 

particles are less sticky compared to H2O ice particles. 

It is proposed that this difference in stickiness would 

originate from the difference in the dipole moment 

[e.g., 9]. In other words, they claimed that the low 

threshold velocity for sticking of CO2 ice particles 

might be due to the small surface free energy of  non-

polar CO2 ice. However, we note that the literature 

value of the surface free energy of CO2 ice (80 mJ m−2, 

[10]) is comparable to that of H2O ice (100 mJ m−2, 

[11]). In addition, the values of elastic properties (i.e., 

the Young's modulus and Poisson ratio) are also 

similar between two materials. In the framework of the 

classical theory for dust growth [2,3], one would then 

expect the threshold velocity for sticking to be similar 

for H2O and CO2 ices.  

In this study, we investigate another possibility to 

explain the low threshold velocity for sticking of CO2 

ice particles compared to that of H2O ice particles. 

Krijt et al. [12] constructed a viscoelastic contact 

model. This model is the advanced version of the 

contact theory for perfectly elastic adhesive spheres, 

which is called JKR theory [13]. The viscoelastic 

contact model takes into account a crack propagation 

at the edge of the contact and an energy dissipation 

arising from “viscoelastic” behavior beneath the 

contact. Applying this model to H2O ice particles, 

Gundlach and Blum [4] found that the threshold 

velocity for sticking is up to an order of magnitude 

higher than that predicted from JKR theory. Therefore, 

we can potentially explain the large difference in 

stickiness between H2O and CO2 ice particles reported 

by Musiolik et al. [7,8] if CO2 ice particles follow 

more closely JKR theory for perfectly elastic adhesive 

spheres.  

Typical Results for Collisions: Here we show the 

typical results for collisions between two equal-sized 

spheres of CO2 ice. We set R1 = 60 μm and Tvis = 10−9 

s, and exploring a range of impact collision velocities 

Vin. Here R1 is the particle radius and Tvis is the 

“viscoelastic” relaxation time which controls the 

strength of energy dissipation [4,12]. We found that 

there are three types of collision outcomes, namely, 

sticking collisions, bouncing collisions, and double 

collisions.  

Sticking collision. The grey lines of Figure 1 show 

the time evolution of the contact radius, a, and the 

mutual approach, δ, for a head-on collision at Vin = 3.5 

cm s−1. The most important difference between our 

viscoelastic contact model and JKR theory is whether 

the kinetic energy dissipates during contact or not. For 

the case of Vin = 3.5 cm s−1, the spheres cannot separate 

and instead oscillate back and forth. Both a and δ 

finally reach the stable state in JKR theory due to the 

dissipative effects when we use the viscoelastic contact 

model. In the framework of JKR theory, in contrast, 

the oscillation would not be dampened. The dissipative 

effects increase the threshold velocity for sticking.  

Bouncing collision. Even if the dissipative effects 

work, collisions of two spheres will result in bouncing 

as the collision velocity is increased. The red lines of 

Figure 1 show the time evolution of a and δ for a head-

on collision at Vin = 4.5 cm s−1. In this case, the contact 

radius finally becomes a = 0, and the mutual approach 

and the approaching velocity are δ > 0 and dδ/dt < 0 at 

the end of the contact. At that point, the spheres 

separate and move away from each other.  

Double collision. There exists a narrow range of 

impact velocities for which we can observe a “double 

collision”. This double collision occurs as a result of 

energy dissipations and viscoelastic cracking. The blue 

lines of Figure 1 show the evolution of a and δ for a 

head-on collision at Vin = 4.05 cm s−1. In this case, the 

mutual approach and approaching velocity are δ > 0 

and dδ/dt > 0 at the end of the contact. As dδ/dt is 

positive, two spheres are expected to re-collide after 

their separation. We therefore named this outcome as 

the “double collision”. We note that the collision 

velocity of the second collision is much lower than that 

of the first collision because of dissipative effects, and 

the second collision should result in sticking.  
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Figure 1. Time evolution of the contact radius, a, and 

the mutual approach, δ, for head-on collisions. The 

dashed lines represent the stable state in JKR theory 

[13].  

 

Threshold Velocity for Sticking: We calculate the 

threshold velocity for sticking (i.e., the transition 

velocity from double collision to bouncing collision) 

using the viscoelastic contact model, and we also 

compare our numerical results with experimental data 

reported by Musiolik et al. [7,8].  

CO2 ice particles. Musiolik et al. [7] performed 

laboratory experiments of collisions of CO2 ice 

particles within a vacuum chamber at a temperature of 

80 K. The typical radius of the particles is R1 = 60 μm. 

They found that the threshold velocity for sticking is 

Vstick = (0.04 ± 0.02) m s−1. Figure 2 shows the 

dependence of Vstick on Tvis. As shown in Figure 2, Vstick 

hardly changes when Tvis < 10−11 s. In this case, Vstick is 

almost identical to that of JKR theory. In contrast, 

when Tvis > 10−9 s, the threshold velocity for sticking is 

several times higher than that predicted from JKR 

theory. We got the suitable range of Tvis to reproduce 

Vstick reported by Musiolik et al. [7] as follows: 8.5 × 

10−11 s < Tvis < 1.97 × 10−9 s.  

 
Figure 2. Dependence of the threshold velocity for 

sticking, Vstick, on the viscoelastic relaxation time, Tvis. 

The black dashed line represents the threshold velocity 

for sticking obtained from laboratory experiments and 

the yellow shaded region shows the uncertainty: Vstick = 

(0.04 ± 0.02) m s−1 [7]. The typical radius of CO2 ice 

particles is R1 = 60 μm.  

 

H2O ice particles. Musiolik et al. [8] also 

performed laboratory experiments of collisions of H2O 

ice particles within a vacuum chamber at a temperature 

of 80 K. The typical radius of the particles is R1 = 90 

μm, and their experimental results suggest that Vstick ~ 

0.73 m s−1. We found that we cannot explain the 

reported value of Vstick by using JKR theory [13]. 

Assuming that the range of the surface free energy is 

100 mJ m−2, the required value of Tvis is approximately 

9.8 × 10−9 s, and Tvis of H2O ice particles with R1 = 90 

μm is an order of magnitude larger than that of CO2 ice 

particles with R1 = 60 μm.  

Conclusion: Therefore, we concluded that the 

large difference in Vstick between CO2 and H2O ice 

particles would originate from the large difference in 

Tvis, i.e., the strength of viscoelastic dissipation.  
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