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Introduction:  Research in planetary seismology is 

fundamentally constrained by a lack of data. Seismo-

logical science products of future missions can typical-

ly only be informed by theoretical signal/noise charac-

teristics of the environment [1] or likely Earth-

analogues [2]. Although objectives can be re-assessed 

after some initial data-collection upon lander arrival, 

transfer of high-resolution data back to Earth is costly 

on lander power usage.  

Over the last several years, development of GPU 

computing techniques and open-source high-level APIs 

have led to rapid advances in deep learning within the 

fields of computer vision, natural language processing, 

and collaborative filtering. These techniques are ac-

tively being adapted for a variety of tasks in seismolo-

gy, including: earthquake detection [3], seismic phase 

discrimination [4], and ground-motion prediction [5].  

 Until the recent detection of marsquakes during 

the Mars InSight mission, the only other measurements 

of seismicity recorded outside of Earth was on the 

Moon during the Apollo missions (1969 to 1977) [6]. 

This dataset has been periodically revisited using new 

seismological methods, including ambient noise inter-

ferometry [7] and Hidden Markov Models [8].  

We developed a binary seismic detection classifier 

using Convolutional Neural Networks (CNNs) trained 

from Earth seismic data and tested it against cataloged 

moonquakes recorded by the Apollo Passive Seismic 

Experiment (PSE). Two- to five-layer convolution 

models were tested against a subset of 200 Grade-A 

events from the PSE and obtained station accuracy 

average of 89-96%. The three-layer model was then 

used to catalog moonquakes from the Apollo 17 Lunar 

Seismic Profiling Experiment (LSPE).  The algorithm 

was able to obtain detections for LSPE moonquakes 

with approximately one order of magnitude greater 

accuracy than a recent study using Hidden Markov 

Models (HMMs) [9].  

 

Methodology: We built a prototype deep learning 

classifier that was able to distinguish between seismic 

activity and noise through examples of spectrogram 

images for each category recorded on Earth.  

Earth seismic data was downloaded using the IRIS 

utility PyWeed in a time window around the earth-

quake first arrival. For the classifier, we used an inter-

val of 180 seconds before and 20 seconds after the P-

wave arrival of earthquakes greater than Mw 3 from the 

Piñon Flats Observatory (PFO) seismic station [Fig. 1]. 

This station was chosen due to its long operating dura-

tion and location between the San Andreas and San 

Jacinto fault zones. The variety of recorded events had 

diverse spectrogram characteristics which promoted 

algorithm generalization.  

 

Figure 1: Time series [A] and spectrogram [B] of a Mw 

3.7 earthquake at PFO.  

 

Data augmentation is a technique in computer vi-

sion where new images are created by modifying exist-

ing data [10]. In image recognition, this is typically 

done by cropping, zooming, or rotating images. How-

ever, applying data augmentation in this manner will 

decrease the accuracy of our model, as cropped spec-

trograms may omit valuable information in the low or 

high frequencies. Instead, we chose twenty sliding 

windows across the noise and earthquake segments 

with one second overlap starting at 0 seconds for the 

noise and at 81 seconds for the earthquake (19 seconds 

prior to the onset of the P-wave at 101 seconds). A 

total of 27,800 spectrograms were used in the proto-

type, approximately 20% of which (5240) were sepa-

rated into a validation set. 

The prototype was built using the fastai computer 

vision library [10] with a batch size of 64 and image 

reduction to 224x224 pixels. Two- to five-layer convo-

lution models with dropout were trained over fifty 

training cycles [Figure 2]. Each of the four models had 

an accuracy of over 99.9% on the validation set. We 

chose to name our ensemble of models “MoonNet”.   
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Figure 2: Architecture for the 2-layer CNN used in this 

study. An input spectrogram of size 224x224 with 

depth 3 (RGB) is convoluted with 32 kernels of dimen-

sions 5x5x3 then passed through a Rectified Linear 

Unit (ReLU) activation function before undergoing 

dimensionality reduction (pooling). The resulting acti-

vation maps are then passed through this process again, 

dropout is applied, and a fully-connected layer (FC) is 

used to sort the volume into a two-element vector of 

quake or noise probabilities (Peq and Pnoise).  

 

Results: Each of the models was tested against 200 

“Grade-A” events of the PSE and found to have be-

tween 89-99% accuracy across all seismic stations. An 

algorithm was developed to sort detections from each 

model into arrivals which removed false picks and 

extra consecutive detections. The three-layer convolu-

tion model was found to have the highest percentage of 

correct detection and was applied to the LSPE dataset. 

This model was applied to approximately 8 months 

of LSPE data and compared with a recent study using 

HMMs [9] [Figure 3]. Two pre-processing steps were 

necessary to account for differences between the Earth-

trained model and the lunar data: (1) the typical moon-

quake signal is much weaker in power compared to 

earthquakes and had to be capped at 1e-6 counts2/Hz, 

and (2) a 10 Hz highpass filter was applied to remove 

low-frequency lunar noise. Figure 3 displays a typical 

one-hour trace of data and compares the HMM detec-

tions with MoonNet3L. We can observe through visual 

inspection that the results from the MoonNet3L model 

produce more accurate arrivals with fewer false or du-

plicate detections. The arrivals in each hour segment 

were summed across each day. The daily moonquakes 

vary with periodicity of approximately a month, con-

sistent with the day/night cycle that drives the genera-

tion of thermal moonquakes. Similar to what was ob-

served in the PSE application, there are occasional 

false detections in the LSPE catalog due to instrument 

glitches which register as large bursts of energy across 

the frequency spectrum. As hand-picked catalogs of 

the LSPE thermal moonquakes do not exist, it is diffi-

cult to quantify the accuracy of the model.  

Through this study, we have demonstrated that ac-

curate seismic detections of planetary seismicity can be 

made using deep learning generalized algorithms de-

spite a lack of local training data. We hypothesize that 

such algorithms are lightweight enough to conduct 

lander-side event detection. Future work will assess the 

detection capability of these types of algorithms to 

other planetary bodies.  

 

 

 

Figure 3: LSPE detection comparison between a Hid-

den Markov Models study [9] [A, black lines] and 

MoonNet3L [B, C, red lines].  
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