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Introduction: CI and CM chondritic meteorites are 
composed of primitive materials that record early Solar 
System processes (e.g., aqueous alteration). Bennu, the 
target of the OSIRIS-REx spacecraft, is a near-Earth 
asteroid with a composition analogous to CI and/or CM 
chondrites [1]. Because asteroids like Bennu provide 
important information about the building blocks of the 
early Solar System, the development of methods for 
quantitative remote mineralogical analysis is desirable. 
Here we focus on constructing a mid-infrared (MIR) 
model for the prediction of fine and coarse particulate 
mineral abundances of CI/CM chondritic materials. The 
model can be applied to laboratory data, OSIRIS-REx 
Thermal Emission Spectrometer (OTES) data collected 
of Bennu, and infrared telescopic observations of other 
asteroids. 

Bennu, an asteroid littered with boulders [2], has 
coarse particulate materials that contribute to OTES 
spectra. However, OTES spectra cannot be 
satisfactorily modeled only by coarse particulate 
mineral spectra, and Hamilton et al. interpreted a fine 
component contributing to OTES spectra [3]. Therefore, 
a further investigation of the contribution of fines is 
worthwhile. In the MIR, spectra of fine and coarse 
material have different characteristics (Figure 1).  
Additionally, fine particulate minerals contribute 
nonlinearly to spectra in mixture, complicating their 
quantification [4]. 

This work utilizes an integrated fine (<50 μm) and 
coarse (>125 μm) particulate MIR spectral library of 
mineral mixtures to create a machine learning partial 
least squares (PLS) multivariate analysis model. PLS 
machine learning multivariate analysis is an alternative 
approach to traditional linear models and removes the 

assumption of linear mixing across all wavelengths, 
allowing for the simultaneous modeling of fine and 
coarse particulate minerals. 

Sample Suite: The mineral species utilized in this 
work are terrestrial samples commonly present within 
CI and CM chondrites [5–8]. These minerals include 
antigorite, cronstedtite, saponite, magnetite, pyrrhotite, 
olivine (Fo40, Fo80, Fo95), calcite, dolomite, ferrihydrite, 
gypsum, and enstatite. Suitable samples were obtained 
from several museum collections and dealers or 
synthesized at Stony Brook. Natural samples were 
hand-picked for purity and in some cases were 
centrifuged, acid-washed, or magnetically separated to 
remove unwanted contaminants. Each was hand-
crushed or milled to create fine and coarse particulates. 
Each sample was darkened with 11 vol% carbon powder 
to reduce the visible albedo, which partially controls the 
MIR spectra of materials collected in a simulated airless 
body environment [9]. 

The sample suite includes 13 end-members (as both 
fine and coarse particulates), 102 fine mineral mixtures, 
and 52 fine/coarse particulate mixtures. The end-
member abundances of the 102 fine mineral mixture 
training set are summarized in Figure 2. Some of the 
mixtures act as analogs to CI and CM chondrites and 
match meteorite literature values [5–8]. Additionally, 
the model includes binary or ternary mineral mixtures. 
These mixtures are useful in broadening the mineral 
abundance range from 0 to 100 vol% for each mineral. 
This is necessary for the machine learning model 
because it allows for the prediction of unexpectedly 
high or low abundances by the model. In addition to the 
sample suite of real physical mixtures, 102 synthetic 
coarse sample spectra were made by linear 
combinations of coarse end-members. 

Instrumentation: MIR spectra were acquired in a 
simulated asteroid environment (SAE). For these 
measurements, we utilized the Planetary and Asteroid 
Regolith Spectroscopy Environmental Chamber 
(PARSEC), a custom-built planetary environmental 
spectroscopy chamber at Stony Brook University. 
PARSEC is coupled to a Nicolet 6700 FTIR 
spectrometer for emissivity measurements. Before SAE 
measurements, the chamber was pumped to ~10–4 mbar 
over several hours and subsequently cooled to <125 °C. 
Blackbody measurements were acquired at 70 and 100 
°C while samples were heated to 80 °C. 

Multivariate Analysis: We utilized PLS 
multivariate analysis to build a model that can be 

 
Figure 1. MIR SAE spectra of fine (<50 μm), coarse (>125 μm), 
50% fine/ 50% coarse, and 25% fine/ 75% coarse particulates of 
the end-member saponite. All samples were darkened with 11 
vol% carbon powder. 
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applied to MIR data of meteorites or asteroids with CI- 
or CM-like compositions. The wavenumber range of the 
model used was 1500–1280 and 1200–330 cm–1 to 
exclude a feature centered at 1260 cm–1 associated with 
carbon powder in the samples. The preliminary model 
includes 223 spectra for the prediction of antigorite, 
saponite, cronstedtite, magnetite, pyrrhotite, enstatite, 
and olivine. These minerals had lower internal 
prediction error than the other species and are expected 
to be found in higher abundances in CI/CM material and 
therefore this first attempt utilized fewer end-members 
than available. The internal root mean square error 
(RMSE) of the model ranged from 2–7 vol%. Because 
we used 223 spectra, we selected 15 folds (square root 
of the number of spectra). The 15 folds allow for the  

cross validation of the RMSE of ±7.4 vol% as an 
error metric for spectra outside the model (unseen data) 
instead of an internal RMSE.  

Murchison and Essebi: Using the MIR PLS model, 
we predicted the mineral abundances of fine particulate 
samples of the meteorites Murchison and Essebi (Table 
1) and compared the results to quantitative XRD data 
[6,7]. Here the model overpredicts magnetite and 
anhydrous minerals while underpredicting 
phyllosilicates. 

The empirical uncertainty of predicting the mineral 
abundances of Murchison and Essebi is <15 vol% by 
mineral species. This uncertainty is comparable to linear 

unmixing of coarse particulate materials (~5–15%, 
[10]). This indicates that with further refinement of the 
PLS model, predictions of coarse and fine particulates 
on Bennu can be quantitatively estimated. 

Ongoing Work: The multivariate MIR PLS model 
will be further refined to include calcite, dolomite, 
ferrihydrite, and gypsum. Abundance predictions may 
change with the inclusion of additional end-members. 

We will utilize the final model for mineralogy 
predictions of the OTES global average, type 1 and 2 
spectra of Bennu [3]. Additionally, we will apply the 
model to regions of Bennu for modal mineralogy maps. 
We will also investigate in greater detail surfaces 
showing evidence for a greater proportion of fine 
particles, such as Nightingale, the site where the 
OSIRIS-REx spacecraft collected a sample of regolith, 
as well as other areas previously considered as possible 
sampling sites.  
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Table 1. Prediction of modal mineralogy (vol%) of 
Murchison and Essebi by MIR PLS and quantitative XRD. 
 Murchison Essebi 

Mineral MIR 
PLS 

Quantitative 
XRD [6] 

MIR 
PLS 

Quantitative 
XRD [7] 

phyllo-
silicate 53 72.5 61.4 74.5 

magnetite 10.0 1.1 14.6 5.2 
pyrrhotite 1.8 1.2 5.2 3.9 
enstatite 9.7 8.3 0.0 2.1 
olivine 30.6 15.1 17.9 14.1 

 
Figure 2. Mineral abundances of all mineral species for the training set of 13 end-members and 102 mineral mixtures. The 102 

coarse linear mixtures mirror the abundances of the fine mineral mixtures. 

1147.pdf52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548)


