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Introduction: Previous studies on the spin change       

of rubble-pile asteroids have discussed the effect of        
exogenic events like meteoroid impacts and volatile       
release from pyrosilicate dehydration. The     
mathematical treatment of such events shows a finite        
change in spin rate [1, 2]. However, spin changes         
caused by mass shedding culminating from endogenic       
events like landslides over relatively undeformable      
cores have only been recently studied [3]. It has been          
shown that the surface motion of boulders is a greater          
contributor to spin change as compared to launch and         
crash events that occur as a result of the former [3]. In            
this direction, we shall present a simplified model,        
analytical solutions to which attest to the ​negligible        
spin change due to shedding ensued and preceded by         
surface motion in ​contrast ​to that caused by exogenic         
events.  

Problem formulation: Imagine a sphere (or any       
axis-symmetric shape) of mass ​M ​and radius ​R ​that is          
to rotate about an axis passing through its center with a           
block of mass ​m ​placed at the ​equator​; see Fig. 1. Both            
of them are initially at rest​. The block is being pulled           
towards the sphere and vice versa due to gravity. The          
sphere is suddenly given an ​initial ​angular velocity Ω​i​.         
Due to friction, the block gradually spins up and the          
sphere spins down. Let the ​instantaneous angular       
velocities of the sphere and the block be Ω​s and Ω​b           
respectively.  

       
Figure 1: Schematic for the (a) isometric and (b) top-views of the 
problem description. 
 

Equations of motion: From the free-body diagram       
(FBD) of the block in the radial and tangential         
directions respectively we get, 

Ω RN =
R2

GMm − m b
2 (1) 

and N R ,μ = m dt
dΩb  (2)  

where ​N ​is the normal reaction force and ​µ ​is the           
coefficient of friction. Additionally, we calculate the       
orbital ​angular velocity of the block Ω​o ​for the radial          
location ​R​ by setting ​N​ to zero in Eq. 1. 

At any time instant, from the conservation of        
angular momentum for the sphere-block system, we       
have the following, 

Ω  Ω Ω .Is i = Is s + Ib b (3) 
where, and are the moment of inertia of the Is  Ib        
sphere and the block respectively. 

Steady-state solutions: In steady-state i.e. when      
the spin rate of either body has ceased to change with           
time, Ω​s and Ω​b must be equal, else friction would still           
act to reduce the relative surface velocity between        
them. Let us call this the ​steady-state angular velocity         
Ω​ss​. Thus, 

Ωss = .I Ωs i
I +Is b  

 (4) 
However, this will be true only when This is       .Ωss < Ωo   
because the block can gain an angular velocity of Ω​o at           
most as the normal reaction would vanish at       .Ωss = Ωo  
The maximum limit on Ω​i such that is       Ωss < Ωo  
obtained by replacing by in (4). This gives,Ωss Ωo  

.Ωi
max = Is

(I +I )Ωs b o (5) 
Note that is greater than because the  Ωi

max    Ωo   
conservation of angular momentum spins the sphere       
down in addition to spinning the block up. For         

the block would asymptotically gain=Ωi > Ωi
max      

orbital ​angular velocity due to an asymptotic   Ωo     
decrease of the normal reaction ​N ​and consequently the         
frictional force to zero. This, in turn, prevents any         
further exchange of angular momentum between the       
sphere and the block with the latter slipping on the          
former. We find the ​steady-state ​angular velocity of        
the sphere from the balance of angular  Ωsss      
momentum. 

.Ωsss = Is

I Ω −I Ωs i b o (6) 
​Evolution of spin rates: Eliminating ​N ​from (1) and          

(2) we get the differential equation for the evolution of          
Ω​b​. Note that, Ω​b​ is independent of ​m​.  

​Case 1. Friction acts only until a   )(Ωi < Ωi
max :      

relative surface velocity exists between the sphere and        
the block i.e. as long the system takes to reach          
steady-state. The time taken to reach steady-state is        
obtained on solving the ODE by integrating from       Ωb  

to and ​t ​from 0 to ​T. ​Therefore,0 Ωss  
tanh ( ).T = 1

μΩo

−1
Ωo

Ωss  (7) 
The time evolution of is given by,Ωb  

(μΩ t).Ωb = Ωo tanh o (8) 
Note that the evolution of is independent of     Ωb    .Ωi
However, ​T ​is dependent on through is     Ωi  .Ωss Ωs  
calculated from (3). 

​Case 2. Since the domain of   = )(Ωi > Ωi
max :     tanh−1

does not accommodate absolute values greater than       
one, the steady-state angular velocity of the block for         
all will be The time taken to reach =Ωi > Ωi

max   .Ωo       
steady-state will correspondingly be infinite. As      Ωb  
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tends to i.e. the orbital velocity, the normal  Ωo        
reaction ​N becomes negligibly small. Friction and       
hence the transfer of angular momentum, consequently       
reduce to asymptotically to zero. This happens       
irrespective of .Ωi  

​Results and discussion: Since we are looking at         
axisymmetric shapes it is worthwhile to discuss results        
with respect to rubble-pile asteroids that approximately       
satisfy the condition of axisymmetry; for example       
Bennu and Ryugu [4]. In a setting like Bennu,         

m, Kg, boulder size is m [5]50R = 2  .5 0M = 7 × 1 10     2   
and Kg.0m = 1 4   
 

 
We shall consider different values of: the initial spin         
rate for the sphere and the friction coefficient. Ωi        
Figure 2(a) shows the spin evolution of the sphere and          
the block for rad/hr. The effect of the   .62Ωi = 1      
surface motion on the spin rate of the sphere is          
negligible compared to the block because of the orders         
of magnitude difference in their masses. The effect of         

on is not seen in how the latter evolves but isΩi  Ωb           
reflected in termination criteria for evolution. In Fig.        
2b, the time taken to reach steady-state is seen to          
increase with .Ωi   
 

 
Figure 2: (a) Evolution of and with time for  Ωs  Ωb .62  Ωi = 1
rad/hr. (b) Evolution of with time for different (rad/hr). Ωb  Ωi  
The friction coefficient for all cases is 0.364. 
 
The steady-state angular velocity is unaffected by the        
friction coefficient; see Fig. 3a . This is expected         
because comes directly from the conservation of Ωss       
angular momentum which does not contain . The      μ   
time required to reach steady state ​T follows a         
rectangular hyperbolic relationship with The steady    .μ   
state is never reached if and is reached     μ = 0    
immediately when tends to infinity. This can be  μ       
inferred from in (7)  and observed in Fig. 3b.  

Conclusions: ​In general, there are two separate       
contributions of three-dimensional surface motion on      
the angular acceleration of the core: ​first​, the rate of          

change of angular momentum of the regolith with        
respect to the core, and ​second, ​the rate of change of           
the moment of inertia of the regolith. Because we have          
not considered any change in ​R, ​the second has not          
been accounted for.  

 

 
Figure 3: (a) Evolution of with time for various coefficients of      Ωb       
friction (b) Variation of the time taken to reach steady state ​T .  μ            
with . rad/hr for all cases. μ .62  Ωi = 1  
 

Our simple demonstration predicts the fate of       
regolith (here, the block) that is likely to be shed after           
undergoing surface motion. At low initial spin rates i.e.         
for , regolith equilibrates in the frame of Ωi < Ωi

max        
rotation of the core. For initial spin rates greater than          

, regolith gradually loses contact with the core asΩi
max          

it spins up to , but never leaves the surface i.e.    Ωo        
remains ​loosely bound to the core ​as mentioned for         
Bennu in [5]​. ​Thus, theoretically, ​mass shedding never        
occurs due to ​landslides. ​The regolith asymptotically       
enters orbit around the core.  

When computational studies are performed,     
discontinuities on the surface or temporal and spatial        
discretisation and the associated numerical errors may       
cause the normal reaction ​N to become exactly zero or          
even positive, resulting in ​negligible ​changes in the        
spin rate ​specifically ​due to mass ejection [3].        
However, the solutions presented here are free of such         
errors due to their analytical nature and hence offer a          
conceptual understanding of the equilibrium state      
resulting from such phenomena. 
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Ωo  rad/hr.03582  
T o  hr.08363  

  Ωi
max  + rad/hrΩo .2244 06 × 1 −7  
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