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Introduction:  Quantitatively accurate abundance 

estimation by means of remotely sensed spectra is a non-
trivial task. One approach is to exploit correlations between 
spectral parameters and laboratory composition data, to 
either determine the abundances of elements, like Fe or Ti 
[e.g., 1,2], or to directly estimate mineral abundances [e.g., 
3]. A more sophisticated approach is spectral unmixing. 
Based on known spectra of endmembers the coefficients of a 
mixture that constitutes the best fit to the measured spectrum 
can be determined [e.g., 4,5].  

In general, it has to be differentiated between linear 
mixtures, describing spatially separated endmembers, and 
intimate mixtures, where the light interacts with different 
minerals grains due to multiple scattering in the medium. 
These intimate mixtures are then non-linear, because it is no 
longer a superposition of the endmember reflectance spectra. 
On the Moon, the surface is covered by a porous layer of 
mineral grains. Therefore, a non-linear approach has to be 
employed.  It has been shown that while the reflectance 
spectra have to be unmixed non-linearly, by converting the 
reflectance values to single scattering albedo (SSA) [6] the 
problem becomes a linear combination of SSA spectra [4]. 

On the lunar surface, the main minerals are plagioclase 
and pyroxenes, and in the mare areas additionally olivine and 
ilmenite [e.g., 7]. Since near-infrared (NIR) hyperspectral 
data of high spectral and spatial resolution have become 
available with the Moon Mineralogy Mapper (M3) data set 
[8], the diagnostic absorption bands at 1-µm and 2-µm can be 
used to estimate the abundances of these minerals. One of the 
biggest challenges on the Moon, however, is that not only the 
composition but also the maturity has a strong influence on 
the measured spectra [9, 10]. Due to the influence of the 
space environment on the surface of a planetary body, which 
is not protected by an atmosphere, the spectra become darker 
and the spectral slope increases in the NIR [9,10]. Spectral 
libraries that include returned samples from the lunar surface, 
like the Lunar Soil Characterization Consortium (LSCC) 
catalog, provide mature endmembers and the mineral and 
elemental abundances are well characterized [11,12]. 
However, the simplex of mineral abundances is limited and 
some spectra, especially in the highlands, cannot be 
reconstructed.   

One common and simple approach is to calculate the 
best-fit mixture for all possible endmember combinations in 
the least-squares sense and then select the combination with 
the lowest error to be the solution. For the LSCC catalog 
with relatively similar endmembers several combinations 
produce similar errors, therefore, the choice of the best 
solution is not clear. Small changes in the spectrum or in the 

error function lead to different mineral abundances. One 
approach to account for this issue is to model the 
uncertainties of the predicted endmember abundances. Then, 
an informed decision of the most likely solution can be 
made, and the deficiencies of the model can be understood. 
Bayesian inference [e.g., 13] provides a coherent framework 
to estimate the uncertainties of the model parameters and to 
conveniently include prior knowledge about the problem, 
without using hard constraints. 

Methods and Data Set: This work is based on the M3 
global data set [8]. A global mosaic was created as in [14] at 
a resolution of 2 pixels per degree with thermal [15] and 
photometric [16] corrections applied, to remove the influence 
of topography and thermal emission. Then, a Gaussian 
Mixture Model (GMM) was used to create 64 clusters [17]. 
This way a global data set can be created by exploiting that 
many spectra are very similar. Clustering also reduces the 
influence of noise of the individual spectra. Each centroid is 
then converted to a SSA spectrum and the unmixing 
procedure is employed.  

Bayesian inference can be used to estimate the 
parameters of a model and to simultaneously estimate their 
uncertainty. In the case of unmixing, the model is the linear 
superposition of the endmember SSA spectra weighted with 
the abundances. The probability of the parameters is then the 
posterior distribution. It is proportional to the prior 
distribution and to the likelihood, and thus also to their 
product. The likelihood is a measure on how well the current 
parameters of the model describe the measured data. The 
prior distribution includes assumptions about the distribution 
of the parameters. For this work, we are using uninformative 
priors uniformly distributed between zero and one for the 
abundances. To sample from the posterior distribution, a 
Metropolis-Hastings sampler [18] is used. We are not 
enforcing the sum-to-one constraint, because of possible 
differences in grain size, compaction, or due to a possible 
offset in the sensor. However, we include a normally 
distributed prior for the sum of the weights, centered at 1.0 
with a standard deviation of 0.05. Thus, solutions close to a 
sum to one constraint are favored by the sampler. 

The endmembers are taken from the LSCC catalog 
[11,12]. Additionally, a pure plagioclase sample taken from 
the RELAB library (http://www.planetary.brown.edu/relab/, 
ID: PL-EAC-029) was added in order to improve the 
reconstruction of nearly featureless highland spectra. This 
laboratory plagioclase sample was artificially space 
weathered with the model of [19] to fit the average 
continuum slope of the three brightest LSCC endmembers.  
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Results: The advantage of Bayesian modeling is that a 
posterior probability distribution of the parameters given the 
measurement is obtained, which contains information about 
the most likely solution as well as the uncertainties of the 
model parameters (abundances). Figure 1 shows the 
measured spectrum and the 95% confidence interval of the 
reconstructed spectra. While the variations in the spectrum 
are small, the abundances of the endmembers are varying 
strongly (Figure 2). If all samples are converted from 
endmember to normalized mineral abundances, the 
uncertainties of the mineral abundances can also be 
determined. As an example, the histogram of the plagioclase 
abundance for the shown spectrum is displayed in Figure 3. 
Finally, global maps can be created by using the cluster 
centroids and selecting the mean of the posterior distribution 
as the most likely solution. The plagioclase map is shown in 
Figure 4.  

 
Figure 1: Reconstruction of typical highland spectrum. When using 
only the LSCC catalog (a) the absence of the 1-µm absorption is not 
represented in the reconstruction. When including an additional 
plagioclase endmember (b) the reconstruction is more representative 
for a typical highland spectrum. 

 
Figure 2: Histogram of the sampled posterior distribution of the two 
endmembers (EMs) 61141 from the LSCC catalog and the additional 
artificially space weathered plagioclase endmember. The sum of the 
twenty endmember means is 0.8704, the sum of the modes is 0.7508. 
Therefore, the other endmember contributions are negligible 
compared to the two shown in the histograms. 

 
Figure 3: Histogram of the posterior distribution of the mineral 
abundance of plagioclase. 

Conclusion: In this work, a Markov Chain Monte Carlo 
(MCMC) approach to spectral unmixing has been introduced. 
Compared to classical optimization-based techniques the 
uncertainties of the model are also estimated, enabling an 
informed decision about the best solution. The inclusion of 
an artificially space weathered laboratory plagioclase 
spectrum improves the reconstruction results of a typical 
featureless highland spectrum. 
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Figure 4: Map of the means of the posterior distribution for plagioclase based on the Bayesian inference approach. Black pixels indicate missing 
data. 
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