FORECASTING FOR THE HAZARDOUS ASTEROIDS APPEARANCE. N. I. Perov ${ }^{1,2}$. ${ }^{1}$ State Autonomous Cultural and Education Organization named after V.V. Tereshkova. 150000, Yaroslavl, Ul. Chaikovskogo, 3, Russian Federation. E-mail: perov@yarplaneta.ru. ${ }^{2}$ State Pedagogical University named after K.D. Ushinskii. 150000, Yaroslavl, Ul. Respublikanskaya, 108, Russian Federation.

Introduction: For unpertubed motion of the Solar system's bodies there is collection of modes for the determination of epochs, corresponded for the minimal distances between the two bodies [2]. These arbitrary unpertubed trajectories may be determined, for example, from optical observations with using one and the same algorithm without singularities [3].

Below in the frame of the pairwise two body problem ("the Sun and a particle" and "the Sun and the Earth"), with taking into account the motion of line of apsides and line of nodes [1], the minimal distance between the Earth and a small body is determined.

The Based Equations: Let's denote a_{1}, a_{2} are the semimajor axes of the orbits of the Earth and the asteroid; e_{1}, e_{2} are the eccentricities of the considered orbits; i_{1}, i_{2} are the inclinations of the orbital planes in respect of the ecliptic plane for the given epoch; ω_{1}, ω_{2} are the arguments of the perihelia of the Earth and the asteroids; Ω_{1}, Ω_{2} are the longitudes of the ascending nodes of the considered planes; v_{1}, v_{2} are the true anomalies of the bodies [1], [4], [5].

The relationship for searching of minimal distance r_{12} between the Earth and the small body we represent in the form (1)

$$
\begin{equation*}
\mathrm{r}_{12}^{2}=\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)^{2}=\min \tag{1}
\end{equation*}
$$

Here, \mathbf{r}_{1} and \mathbf{r}_{2} - the heliocentric vectors of the positions of the Earth and the asteroid.

In line with the theory [1], the following assumptions were made.

$$
\begin{align*}
& \mathrm{r}_{1}=\frac{\mathrm{p}_{1}}{1+\mathrm{e}_{1} \cos \left(\mathrm{v}_{1}\right)}, \tag{2}\\
& \mathrm{p}_{1}=\mathrm{a}_{1}\left(1-\mathrm{e}_{1}^{2}\right), \tag{3}\\
& \mathrm{x}_{1}=\mathrm{r}_{1}\left(\cos \left(\mathrm{v}_{1}+\omega_{1}\right) \cdot \cos \left(\Omega_{1}\right)-\right. \\
& \left.\sin \left(\mathrm{v}_{1}+\omega_{1}\right) \cdot \sin \left(\Omega_{1}\right) \cdot \cos \left(\mathrm{i}_{1}\right)\right), \tag{4}\\
& \mathrm{y}_{1}=\mathrm{r}_{1}\left(\cos \left(\mathrm{v}_{1}+\omega_{1}\right) \cdot \sin \left(\Omega_{1}\right)+\right. \\
& \left.\sin \left(\mathrm{v}_{1}+\omega_{1}\right) \cdot \cos \left(\Omega_{1}\right) \cdot \cos \left(\mathrm{i}_{1}\right)\right), \tag{5}\\
& \mathrm{z}_{1}=\mathrm{r}_{1}\left(\sin \left(\mathrm{v}_{1}+\omega_{1}\right) \cdot \sin \left(\mathrm{i}_{1}\right)\right) \tag{6}
\end{align*}
$$

The same equations (2)-(6) we put for the second body, using index " 2 ".

In order to take into account the variations of the quantities of $\omega_{1}, \omega_{2}, \Omega_{1}, \Omega_{2}$, we represent these parameters in the forms

$$
\begin{align*}
& \omega_{1}=\omega_{10}+\mathrm{k}_{1} \mathrm{~d}_{1}, \tag{7}\\
& \omega_{2}=\omega_{20}+\mathrm{k}_{2} \mathrm{~d}_{2}, \tag{8}\\
& \Omega_{1}=\Omega_{10}+\mathrm{K}_{1} \mathrm{~d}_{1}, \tag{9}\\
& \Omega_{2}=\Omega_{20}+\mathrm{K}_{2} \mathrm{~d}_{2} . \tag{10}
\end{align*}
$$

Here $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{~K}_{1}, \mathrm{~K}_{2}$ are empirical constants. d_{1}, d_{2} are variable values, with imposed a constraint on the ascending nodes (The closest approaching of the considered bodies takes place in the ascending nodes, which are equal).

$$
\begin{align*}
& \Omega_{1}=\Omega_{2}, \tag{11}\\
& \text { or } \\
& \mathrm{d}_{2}=\left(\Omega_{10}+\mathrm{K}_{1} \mathrm{~d}_{1}-\Omega_{20}\right) / \mathrm{K}_{2} . \tag{12}
\end{align*}
$$

The index " 0 " references to the initial data sets of $\omega_{1}, \omega_{2}, \Omega_{1}, \Omega_{2}$.

The quantities of r_{12}, x, y, z, and the first derivatives we find with using equalities (1) - (12) and the based equations we write as (13)

$$
\begin{align*}
& \frac{\mathrm{dr}_{12}^{2}}{\mathrm{dv}_{1}}=0 \\
& \frac{\mathrm{dr}_{12}^{2}}{\mathrm{dv}_{2}}=0 \tag{13}\\
& \frac{\mathrm{dr}_{12}^{2}}{\mathrm{dd}_{1}}=0
\end{align*}
$$

For the process of calculating we use the system "MAPLE'15".

Example: Let's find the numerical values of v_{1}, v_{2}, and d_{1} for the epoch of the Earth and the asteroid 2019 SU3 approaching. The initial orbital elements for the Earth and the asteroids are referred to the date 27, April, 2019 [1], [4], [5]. The unit of length is 1 AU. We put mass of the asteroid is less than mass of the Earth.

Using the empirical relation of ω to Ω for the planets of the Solar system [1] we may eliminate some singularities for the computations (for instance, if resonance in motion of the bodies is possible). So, put

$$
\begin{equation*}
\mathrm{k}_{1}=\sqrt{2}, \mathrm{~K}_{1}=-1, \mathrm{k}_{2}=\sqrt{3}, \mathrm{~K}_{2}=-1 \tag{14}
\end{equation*}
$$

Numerical and analytical investigations of two body's motion along heliocentric orbits in the interval of the several revolutions show there are local and global minimums of the distance r_{12} between the bodies. (Fig. 1).

Fig.1. The distance $r_{12}=r_{12}\left(v_{1}, v_{2}\right)$ between the Earth and the asteroid 2019 SU3 is measured in AU. $\mathrm{d}_{1}=0.0173501769 \mathrm{rad}$. The true anomalies v_{1} и v_{2} take values in the interval from 0 to 2π rad.

The formulae (1) - (13) permit to determine the distance r_{12}, and plot the graph of the function $\mathrm{r}_{12}=\mathrm{r}_{12}\left(\mathrm{~d}_{1}\right)$. (Fig. 2), (Fig. 3).

Fig.2. One of the local minimums of the functions r_{12} is the distance $r_{12}=r_{12}\left(d_{1}\right)$ between the Earth and the asteroid 2019 SU3 is measured in AU. d_{1} is measured in rad. $v_{1}=0.05981311596 \mathrm{rad}, \mathrm{v}_{2}=0.008946200265 \mathrm{rad}$.

Conclusion: The advanced way gives scope for take into account the motion of perihelia and ascending nodes of celestial bodies. Estimation of the perturbations offers to determine the global minimum of r_{12}
between the Earth and the hazardous bodies with the smaller error (Fig. 3).

Fig.3. The global minimum of the function $r_{12}\left(r_{12}\right.$ is the distance between the Earth and the asteroid 2019 SU3 measured in AU). d_{1} is measured in radians. $\mathrm{v}_{1}=1.6822015501976 \mathrm{rad}, \mathrm{v}_{2}=5.807095699091 \mathrm{rad}$.

References: [1] Roy A.E. (1978) Orbital Motion. Adam Hilger. Bristol. [2] Perov N. I. (2000) Solar System Research, 2000. V. 34. N. 1. P. 95. URL: https://ui.adsabs.harvard.edu/abs/2000SoSyR..34... 95 P [3] Perov N. I. (1989) Astronomicheskii Zhurnal, 1989. V. 66. P. 1093-1099. URL: https://ui.adsabs.harvard.edu/abs/1989AZh....66.1093 ㄹ. [4] 2019 SU3 - Wikipedia. URL: https://en.wikipedia.org/wiki/2019_SU3. [5] Sentry (monitoring system). URL: https://en.wikipedia.org/wiki/Sentry_(monitoring_syste m). [6] Murray C.D. and Dermott S.F. (2009) Solar System Dynamics. Cambridge University Press.

