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Introduction:  Obliquity of a planet is the angular 

separation between spin and orbit poles, and it has a 

major influence on the seasonal cycle of insolation 

[1,2,3]. It is well established that temporal variations in 

obliquity are a major driver of climate change on Mars 

[4,5] It has has been claimed that the obliquity varia-

tions of Mars are chaotic [6,7,8]. If that assertion is 

correct, then both the distant past and distant future 

climate variations are unknown, and unknowable, from 

a spin dynamics perspective. 

A more correct statement would be that, in the ab-

sence of energy dissipation, obliquity variations of 

Mars would quite likely be chaotic. The evident cause 

is resonance overlap [9]. The spin pole precession rate 

for Mars is close to a dense cluster of orbit pole pre-

cession rates, and the overlap in resonance. Earth has 

similar orbit pole precession rates, to those of Mars, 

but avoids chaotic obliquity variations by having a 

much faster spin precession rate, largely due to the 

Moon [10]. However, even relatively small amounts of 

dissipation suffice to suppress the chaotic variations. 

Using plausible estimates of dissipation rates, at pre-

sent and in the past, we find that the chaotic obliquity 

variations are suppressed. 

In addition, it appears that the rate of dissipation 

has been sufficient to do more than simply suppress 

chaos. In particular, a model which assumes that the 

spin pole dynamics are fully damped, gives a good 

approximation to the present day obliquity. If that sce-

nario is correct, then the distant  past obliquity varia-

tions are still hidden from view, but the future varia-

tions are readily computable. 

Tidal dissipation within Mars, as constrained by the 

observed evolution of the orbit of Phobos, appears 

sufficient to regularize the obliquity variations. If Mars 

has a fluid core, viscous core-mantle coupling would 

also tend to damp the obliquity variations.  

An adequate rate of dissipative damping is a neces-

sary, but not sufficient, condition to establish that the 

obliquity variations are fully damped. Evidence in sup-

port of this stronger conclusion comes from two further 

observations. First is that the current orientation of the 

spin pole of Mars (in both obliquity and azimuth) is 

close to that predicted for a fully damped spin state. 

Second is that numerical integrations of the equations 

of motion for the spin pole, over an interval of a few 

million years, when performed both with and without 

dissipation, differ only slightly, suggesting that the spin 

pole has been driven to the fully damped state. It thus 

appears that the free obliquity of Mars is small, and 

that dissipation plays an important role in the rotational 

dynamics of this body, not unlike the situation for Mer-

cury and Venus. 

Obliquity without dissipation:  We first discuss 

how the Mars spin-orbit system would behave without 

any dissipative processes, and then consider how dissi-

pation changes that state.  

The obliquity of Mars is, of course, just the angular 

separation between the spin pole s and the orbit pole n. 

These two unit vectors determine the relative orienta-

tions of the orbit plane and the equator plane. The 

obliquity is given by  
sn ]cos[  

and its current value is [11,12]    deg1894.25  

The evolution of the spin pole, in the absence of 

dissipative effects, is governed by the non-linear dif-

ferential equation which equates change in spin angular 

momentum to applied solar torque. It can be written in 

the compact form [13,14] 
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with e the orbital eccentricity, and  a rate parameter 

which relates the mass distribution within Mars to the 

solar torque. It is given by 
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where n is the orbital mean motion,  is the spin rate, 

and the principal moments of inertia are A<B<C. For 

Mars, the observed spin pole precession rate is [11.12] 
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and the parameter  has a corresponding current value 

of    yrarcsec/038.0263.8   

If the orbit pole, orbital eccentricity, and oblateness 

of the figure of Mars were all constants, then the solar 

torque acting on the oblate figure of Mars would cause 

the spin pole to precess about the orbit pole at a uni-

form angular rate, and at fixed angular separation. In 

that case the obliquity is constant, and the motion is 

just that of a free (unforced and undamped) spherical 

pendulum. 

If there are variations in the orientation of the orbit 

pole, the spin pole still attempts to precess about the 

instantaneous position of the orbit pole, but the obliqui-

ty is generally no longer constant. If the motion of the 
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orbit pole is slow enough that the spin pole can follow 

it, then the obliquity will remain nearly constant. If, on 

the other hand, the orbit pole moves more rapidly than 

the spin pole can follow, the obliquity variations will 

very nearly reflect the orbit pole motion. The most 

dramatic variations in obliquity occur when the obit 

pole is forcing the spin pole at its resonant frequency. 

Variations in orbital eccentricity and/or gravitational 

oblateness of Mars will further modulate the obliquity 

variations. 

Obliquity energetics: The spin configuration with 

lowest potential energy is that in which the spin pole 

and orbit pole are parallel. The difference in potential 

energy between that configuration and the present is 

∆𝐸 =
3

4
𝑛2𝐽2 𝑀𝑅2 1 − cos2 𝜀  = 2.21 1019  𝐽 

 
Tides raised on Mars by the Sun will dissipate energy 

and tend to damp the obliquity. The rate of tidal energy 

dissipation for a non-resonant rotator, in a circular or-

bit and with zero obliquity provides a lower bound for 

Mars, and can be written as [15] 
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= 9.26 ×  1010  𝑊 

where k2 is the degree two Love number, Q is the tidal 

quality factor, R is the radius of the body, and G is the 

gravitational constant. In the estimate above the esti-

mate of Q is derived from recent analysis of the orbital 

decay of Phobos [16], which samples Mars at a fre-

quency close to that of solar tides. If all of the tidal 

dissipation went into damping the obliquity, it would 

be gone in only a decade. However, most of the dissi-

pation goes into slowing the rotation of Mars. 

Obliquity with dissipation: If the orbit pole were 

precessing at a uniform rate, the expected outcome of 

dissipative processes would be to drive the spin pole 

into a Cassini state [17,18,19]. In such a state, the spin 

pole, the orbit pole, and the invariable pole, about 

which the orbit pole is precessing, all remain coplanar. 

For that to occur, the spin pole adjusts the length of its 

path about the orbit pole so that, though the angular 

rates of the two moving poles need not match, their 

periods of motion do matchIf the orbit pole is precess-

ing at a non-uniform rate, as is the case for Mars, then 

no such Cassini state is possible. However, if the mo-

tions of the orbit pole and spin pole are represented by 

Poisson series, and dissipation is included in the analy-

sis it emerges that, on a mode-by-mode basis, the spin 

and orbit pole motions are again able to be synchro-

nized. This type of analysis has previously been ap-

plied to Venus [20,21], Mercury [22], and the Galilean 

satellites [23]. 

When it is applied to Mars, we find that the spin 

pole orientation, both obliquity and azimuth, agree with 

observation. We thus conclude that the free obliquity 

has been damped and that the obliquity variations are 

not chaotic. 

Implications:  One of the diagnostic features of 

chaotic dynamical systems is that initially nearby con-

figurations evolve along trajectories which exponen-

tially diverge, either forward or backward in time. It is 

informative to compare this behavior with that seen in 

Hamiltonian and dissipative systems. In a Hamiltonian 

system, Liouville's volume theorem states that the 

(properly defined) volume of a region in phase space 

remains constant under the flow of the.system. Dissipa-

tive systems, in contrast, contract the volume of phase 

space along the flow. The role of dissipation in regular-

izing otherwise chaotic systems is an area of active 

research [24,25], and it is difficult, at this juncture, to 

make useful generalizations. 

Behavior of the spin pole at times in the far distant 

past are equally inaccessible either way. Rather ironi-

cally, dissipative solutions allow better predictions of 

future behavior, as small errors in intial conditions 

damp out, but all of the useful information in the geo-

logic record pertains to the past. 
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