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Introduction:  The final orbital and compositional 

configuration of the terrestrial planets is strongly gov-
erned by giant impact events. These collisions occur 
between large, similar-sized planetary ‘embryos’ and 
feature a rich array of outcomes not exhibited by cra-
tering events between disparately-sized bodies. One 
example is ‘hit and run,’ where the impactor plows 
through the target, continuing downrange largely un-
scathed [1]. Unlike in cratering collisions, the material 
strength of the bodies is negligible in comparison to 
gravitational (tidal) forces that act to disrupt and redis-
tribute mass during the collision [2]. 

Smoothed Particle Hydrodynamics (SPH) codes are 
employed to simulate giant impacts to understand the 
relation of pre-impact conditions to post-impact out-
comes. When building scaling laws (pseudo-models) 
of giant impact outcomes in the gravity regime several 
assumptions are made: 

1. Scale Invariance: The mass of remnants is 
invariant of the scale of the collision [2,3]. 

2. Material Invariance: The mass of remnants 
is invariant of the material composition of the 
colliding bodies [3,4]. 

By analyzing ~1400 SPH simulations, we demonstrate 
that these common assumptions are likely invalid. We 
also demonstrate that the threshold for hit and run [5] 
often employed in N-body planet formation simula-
tions [e.g. 6,7] underestimates the occurrence of hit 
and run. Our results have significant implications for 
the phenomenology of giant impacts through different 
stages of the chaotic phases of planet formation. 

Methodology: We analyze ~1400 SPH simulations 
that include collisions of bodies with different materi-

als: rocky (pure SiO2), ‘chondritic’ (2-layer; 70% SiO2, 
30% Fe), and icy (3-layer; 50% H2O, 35% SiO2, 15% 
Fe). Pre-impact conditions range from 1-4 vesc, with 
fine sampling at more probable, low velocities (~1-2 
vesc) [e.g. 6]. We sample the entire range of possible 
impact angles, from 0.1° < θimp < 89.5°. 

We develop an empirical model to fit the results 
from these simulations in terms of the remnant masses; 
best-fit parameters were optimized [8] using a Markov-
chain Monte Carlo routine [9]. We implement a 
weighted scheme that accounts for imbalances in the 
simulation database, e.g. weighting simulations by the 
expected distribution of impact angles [10]. The empir-
ical model can be implemented in an N-body environ-
ment, encouraging the quick adaptation of these results 
in planet formation codes. 

Results:  We find our disruption thresholds across 
the database of simulations are systematically lower 
than those reported in [3]. Specifically, for head-on 
collisions we find catastrophic disruption, when the 
largest remnant mass is half that of the total mass, oc-
curs at impact energies ~1.6-2.7 times the gravitational 
binding energy of the colliding bodies. Whereas [3] 
reports values ~2-3 times larger than this. We posit 
that a possible source for this discrepancy is due to the 
scale of the collision. [3] simulated collisions between 
bodies with total mass of ~10-6-10-3 MEarth; we simulate 
collisions between bodies with total masses of ~10-2-
101 MEarth. Interestingly, the transition between those 
size regimes coincides with the transition between sub-
sonic to supersonic escape velocities for common geo-
logic materials. This strongly suggests a scale depend-
ency in giant impact phenomena and, indirectly, a ma-

Figure 1: SPH visualizations of impacts between homogeneous (pure SiO2) bodies (left), 2-layer (SiO2-Fe) bodies 
(middle), and 3-layer (H2O-SiO2-Fe) bodies (right). All collisions have an impactor-to-target mass ratio of 0.2, im-
pact velocity, vimp = 1.6vesc,   and impact angle, θimp = 30°. Target masses from left to right are 0.5, 0.1, and 1.0 MEarth 
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terial dependency since the effect may be governed by 
the sound speed of the media. 

We also examined the effect of density stratifica-
tion on the outcomes in giant impacts. The high-
resolution sampling of our database allowed us to un-
cover a fundamental difference in the behavior of hit-
and-run collisions between bodies of different material 
compositions. More homogeneous bodies tend to un-
dergo messier hit-and-run collisions, producing more 
mass in debris (See Figure 1). The ‘runner’ in a hit-
and-run collisions under these circumstances is also 
more likely to be disrupted and gravitationally reaccu-
mulated downrange. In contrast, more strongly densi-
ty-stratified bodies show cleaner hit-and-run phenome-
na, and the transition to hit-and-run in the impact pa-
rameter space is sharper. 

We develop a parameter Λ in [8] that provides a 
scalar representation of the degree of density stratifica-
tion of the colliding bodies. Its value is equal to the 
ratio of the analytically-derived gravitational binding 
energy of the bodies (assuming they are uniform densi-
ty) and the numerically-derived gravitational binding 
energy. Values of Λ≈1 indicate a homogeneous distri-
bution, whereas our 3-layer, water-rich planets have 
values of Λ≈0.85. In Figure 2 we present our empirical 
fit to the hit-and-run angle as a function of Λ and the 
impactor-to-target mass ratio. We generally find that 
clean hit-and-run outcomes occur at higher angles in 
homogeneous bodies. This is an intuitive result as cen-
trally-condensed bodies are less thoroughly disrupted 
in tidal interactions than those which do not possess 
cores, under identical conditions. Since growing plan-
ets undergo increased central compression and the den-
sities of different materials produce different stratifica-
tion structures, this result is an indirect violation of 
both material invariance and scale invariance. 

Conclusion:  We demonstrate new potential con-
trols on the outcomes of giant impacts [8]. Collisions 
between bodies larger than ~10-2 MEarth exceed the 
sound speed of geologic materials and tend to produce 
more erosive collisions as a consequence. This effect 
violates the commonly-assumed scale and material 
invariance of outcomes of giant impacts; however, we 
reserve more careful examination of scale invariance 
for future work. Considering this effect may be de-
pendent on the bulk sound speed of the geologic mate-
rial, special attention must be placed on the equation of 
state and initial thermal state of different studies in the 
giant impact literature. 

We also demonstrate that the occurrence of hit-and-
run outcomes is governed by the density stratification 
(differentiation state) of the colliding bodies [8]. Primi-
tive, undifferentiated bodies tend to undergo more ero-
sive hit-and-run collisions than their differentiated 

counterparts for the same impact conditions. We exam-
ine the potential reasons for this difference, and con-
sider the possibility that it is due to tidal effects. How-
ever, given the results of material dependence, a com-
plicated interplay between thermodynamics and strati-
fication likely governs the hit-and-run transition. 

In summary, we find fundamental differences be-
tween the accretionary behavior of primitive, less-
stratified bodies, and evolved, differentiated bodies. 
Under these findings, stripped cores of planetary em-
bryos will revert back to more erosive style hit-and-run 
outcomes. Furthermore, larger bodies overall may tend 
to undergo more erosive collisions across a range of 
impact parameters, potentially providing a natural bot-
tleneck for the growth of bodies larger than roughly the 
Moon. 
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Figure 2 – Angles at which hit-and-run out-
comes occur for different material types (density 
stratifications). The top of the error bars denote the 
minimum angle where hit and run occurs, the bot-
tom of the error bars indicate the largest angle at 
which hit and run is not seen to occur. Symbols 
represent different material types: ‘x’ represents 
pure SiO2 bodies, squares represent ‘chondritic’ 
SiO2-Fe bodies, circles represent water-rich, H2O-
SiO2-Fe bodies. The grazing angle from [5] is 
shown as a dashed line. The solid lines represent 
our empirical fit to the hit-and-run angle. 
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