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Introduction:  Jupiter’s moon Io possesses the larg-

est surface heat flux of any terrestrial body in the solar 
system, at ~2.24 W m-2 on average, or more than 20 
times the average Earth heat flux [1]. Io likely transports 
heat through advection as magma rises from deeply 
rooted vents to the surface [2]. As the magma flows on 
to the surface, it spreads and cools. Subsequent flows 
bury older flows and the lithosphere subsides due to the 
weight. Buried flows at the base of the lithosphere heat 
through conduction, melt, and start the cycle again [2]. 

Io’s extreme volcanism buries the surface at least 
200 meters, and up to 140 km, per million years [3,4]. 
Surface features of Io are therefore very short lived, ge-
ologically speaking, but what about interior structures? 
Here we investigate the longevity of heat-pipes using 
simple models involving melt migration.  

Model:  Using the finite element code ASPECT 
2.0.1 [5,6], we model the evolution of an idealized, 
preexisting heat-pipe in an Ionian lithosphere in two di-
mensions. For incompressible models with melt migra-
tion, ASPECT operates by solving the following equa-
tions for conservation of mass and momentum (Eq 1-3), 
fluid content (Eq. 4), and temperature/heating (Eq. 5), 
describing the behavior of silicate melt moving through 
and interacting with a viscously deforming host rock: 
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See [5,6,7,8] for more details and derivations. The melt-
ing model follows the parameterization of [9] for dry 
peridotite.  

In Eq (5), this model takes into account release and 
consumption of latent heat due to melting and freezing 
and constant heating. Heat generation in this model is 
not radiogenic heating, but rather an approximation of 
the tidal heating in the asthenosphere of Io. For simplic-
ity, it is assumed to be constant throughout the astheno-
sphere. 

The model setup consists of a 100 km by 100 km 
box representing a ~50 km thermal lithosphere, and the 
upper 50 km of a molten asthenosphere. The initial tem-
perature profile of the lithosphere is set to the steady-

state solution of the heat equation in a continuously bur-
ied lithosphere: 
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where ∆𝜕𝜕 is the temperature difference between the 
base of the lithosphere and the surface, 𝜕𝜕𝑠𝑠 is the surface 
temperature, 𝑑𝑑 is the lithosphere thickness, and 𝑙𝑙 =
𝛼𝛼/𝑣𝑣, where 𝛼𝛼 is the thermal diffusivity, and 𝑣𝑣 is the bur-
ial rate [2]. The temperature of the asthenosphere, at 
depths greater than 𝑑𝑑, is initially set to 1500 K. The top 
temperature is 113 K and the bottom remains at 1500 K. 

The heat-pipe itself is defined as a section of the lith-
osphere on the left hand side of the model with the same 
temperature as the asthenosphere. The model set up is 
approximating an axisymmetric geometry, therefore the 
width of the heat-pipe section in the model represents 
the radius of the heat-pipe. A small slope is added to the 
base of the lithosphere (the thickness of the lithosphere 
increases slightly away from the pipe) to facilitate melt 
flow toward the heat pipe. 

The side boundaries are free slip and insulating. The 
bottom boundary is open to solid and melt flow. The top 
boundary has an imposed solid flow of 1 cm/yr down-
ward as a simple approximation of burial. 

 

 
Figure 1 - Model set up. Three models with differing heat-
pipe radii (r) were run. Solid material flows in from the top 
of the box at 1 cm/yr, representing burial.  

Results:  Preliminary results are presented for heat-
pipes with radii of 5, 10, and 25 km. In all three of the 
models, the same two primary processes occur.  

First, the solid lithosphere flows downward and 
melts at the lithosphere/asthenosphere boundary. This 
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melt flows upslope to the heat-pipe, however in this 
model setup, the slope of the lithosphere is small to per-
mit rapid lateral transport along the base of the litho-
sphere, and the newly generated melt accumulates in a 
decompaction channel [10,11]. In addition, the melt pre-
sent in the asthenosphere rises buoyantly, also feeding 
the decompaction channel.  

Second, the  heat pipe loses heat to the surrounding 
cold lithosphere at a faster rate than heat is supplied by 
rising melt. Therefore, the heat pipe cools and the melt 
it contains crystallizes, shrinking the radius of the heat 
pipe. The models described here have not run long 
enough to observe the eventual closure of the heat pipe. 
However, a preliminary calculation with a 1 km diame-
ter pipe documents closure after 1800 years. The pipe 
pinches off near its base, leaving a magma body in the 
shallowest levels of the lithosphere. 

The Stefan Problem: In order to determine the 
amount of time until heat pipe closure, we compare our 
numerical model with a Stefan problem, as applied to a 
cooling and crystallizing dike [12,13]. Heat is trans-
ferred by diffusion between a molten body and a solid 
medium in contact with it, with an additional heat 
source related to crystallization. The position of the so-
lidifying wall 𝑦𝑦𝑚𝑚, changes over time 𝜕𝜕 as: 

𝑦𝑦𝑚𝑚 = 2𝜆𝜆1√𝜅𝜅𝜕𝜕 (7) 

where 𝜅𝜅 is the thermal diffusivity and 𝜆𝜆1 is a constant 
value corresponding to the solidification boundary, 
given by  
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where L is the latent heat of fusion, 𝜕𝜕𝑚𝑚 is the tempera-
ture of the molten material, and 𝜕𝜕0 is the temperature of 
the solid material. 

The positions of the 25 km radius heat-pipe in the 
numerical model corresponds well to the calculated val-
ues, however the 5 and 10 km shrink at a faster rate in 
the model than in the calculation. This is likely due to 
the finite size of the heat pipe and heat loss from the 
opposite wall. The times for full heat-pipe closure are 
expected to be  250,000 years for a 5 km radius, 900,000 
years for a 10 km radius and 6.1 million years for the 25 
km radius. 

Discussion: Despite the large size used in these 
models, heat-pipes appear to have a relatively short 
lifespan, shorter than the time needed to renew the lith-
osphere by burial (2.5 million years in these calcula-
tions) . If patera size is at all related to heat pipe radius, 
a large eruptive center such as the 200 km diameter Loki 
Patera could last 90 million years, however smaller heat 
pipes are expected to close relatively quickly  Processes 
that may help keeping heat pipes open include shear 
heating, which was not included in this model. Shear 

heating would be particularly important at the heat pipe 
wall, where strain rate was elevated.  

Preliminary models show that a fully closed heat 
pipe leaves behind a remnant, cone-shaped structure at 
the base of the lithosphere. Asthenospheric melt would 
likely collect and focus here. Heat release due to crys-
tallization of melt may alter the thermal profile allowing 
melt to rise through the lithosphere [14,15], facilitating 
the reactivation of an older heat-pipe. If heat pipes are 
so thin that they close over a time scale of a few decades, 
volcanic activity my still continue episodically at the 
same location due to this potential for  reactivation. For 
example, Loki has been observed have activity cycles 
with 1.5 year period [16], implying a 13 m thick heat 
pipe.  

 

 
Figure 2 - Position of heat-pipe wall at time t, in the numeri-
cal model (colored dots) and as a solution to the Stef-an 
problem (black line). 
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