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Summary:  We use novel machine learning tech-

niques to infer global patterns of lunar surface mineral-

ogy from elemental abundance data. We explore the 

information content in the distribution of the chemical 

elements in relation to each other, and discuss how they 

can be linked to the formation of common minerals in 

various surface regions. We independently confirm the 

global patterns of plagioclase and olivine distribution 

in Lemelin et al. (2016) [1]. 

Introduction:  Global surface mineralogical maps 

are both valuable to understand the processes that 

shaped the crust and challenging to obtain due to the 

degeneracy between elements and minerals. Previous 

estimates of large-scale lunar surface mineralogy are 

typically obtained by using visible and near-infrared 

spectroscopy, multispectral imaging, and thermal emis-

sion spectroscopy [1-3]. We explore patterns in ele-

mental abundance data directly to further constrain 

large-scale distributions of major minerals on the 

Moon. 

We train an artificial neural network to predict the 

conditional probability of an element having a given 

abundance y given one or more element abundances at 

that point x (written p(y|x)). Where a common factor 

influences both the input(s) and output values, the pre-

diction is expected to be good. By comparing the accu-

racy of the prediction to the case where the neural net-

work learns p(y) without any other elemental 

knowledge, we can quantify the information gain ob-

tained by the knowledge of x in terms of a predictabil-

ity variable (written P(-) below). 

We use this predictability analysis to explore re-

gions in which certain elements are influenced by a 

common chemical process (e.g. formation of a specific 

mineral), without prior assumptions about correlations 

between the elements. This serves as an independent 

way to identify patterns in global mineralogical distri-

bution, and infer geological processes. 

Method:  All data used are publicly available on 

the PDS website (https://pds.nasa.gov/). The elemental 

abundance data were obtained from the Gamma Ray 

and Neutron Spectrometer in the Lunar Prospector 

mission. Level 2 data were used. They include Mg, Al, 

Si, Ca, Ti, Fe content in the form of oxide weight frac-

tion, and K, Th, U content in ppm. These data are 

binned on 2 degree equal area pixels. All data channels 

are normalized by their corresponding mean and stand-

ard deviation values. 

At each pixel location, we construct a vector of all 

elemental abundance data, without spatial information. 

Train and test set are constructed by (1), randomizing 

the sequence of pixels so that spatial correlation is pre-

vented and (2), dividing the domain into 4 sets of data, 

each of them rotating to be the test set while the other 3 

serve as the training set. 

We train a neural network to learn the conditional 

probability of each element abundance given the 

knowledge of one or more of the other abundances by 

minimizing the categorical cross-entropy loss (up to 49 

one-to-one pairs, plus a few specific many-to-one net-

works as discussed below). The architecture is 5 layers 

deep and includes 25% dropouts between layers. It is 

implemented using the standard torch package in Py-

thon [4]. 

Once those predictive networks are trained, we 

compute a predictability metric P designed to show the 

percentage of information gained about the distribution 

of an element by adding the knowledge of another one. 

To do so, we compare the categorical cross-entropy 

loss predicting p(y) to that predicting p(y|x), normaliz-

ing it to the total entropy of y. The final number is be-

tween zero and one, with P = 1 being ‘perfect predicta-

bility’ (i.e., knowledge of x is equivalent to knowledge 

of y) and P = 0 being ‘total independence’ (where the 

knowledge of x does help predicting y at all). Given the 

fluctuations in the training of neural networks, only 

predictabilities higher than 0.1 are considered signifi-

cant 

We assume here that the process that influences 

how elements may be related to each other is the for-

mation of minerals. We analyze the distributions of 

relative abundances of minerals, based on the predicta-

bility results. We take into account the common lunar 

minerals plagioclase, pyroxene, olivine, and ilmenite. 

Results and interpretations:  1. Global distribu-

tion of plagioclase.  Fig 1a shows Ca content plotted 

against Al for the entire lunar surface. In particular, red 

color corresponds to the anorthositic crust. We can see 

that in the anorthositic crust, a broad inverse relation 

can be observed between Ca and Al, due to the high 

concentration of plagioclase in these areas. In the mare 

regions and SPA (green points), the range of Ca values 

is similar to that of highlands, but Al values can be 

very low. This shows that Ca- and Al-bearing pyroxene 

is present in these areas. In these areas, no clear inverse 

correlation can be observed between Ca and Al in Fig 

1a. In fact, both P(Ca|Al) and P(Al|Ca) (Fig 2) are very 
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poor in these areas, and fall below the 0.1 threshold. 

The fact that P(Ca|Al) and P(Al|Ca) are virtually the 

same indicates that the neural network only modeled 

the inverse relation between Ca and Al in plagioclase, 

and did not find a pattern for Ca-Al relation in the 

mares. It follows that the regions that show predictabil-

ity between Al and Ca are those where there is a signif-

icant amount of plagioclase. Our prediction of the dis-

tribution of plagioclase agrees with Lemelin et al. 

(2016) [1]. 
Figure 1. Left: glob-

al Ca content (x axis) 

plotted against Al. 

Right: global Fe 

content (x axis) plot-

ted against Mg. All  
data are normalized by their mean and standard deviation. 

Red color corresponds to values from the anorthositic crust. 

Green color corresponds to mare regions and SPA. 
 

 

 

 

 

 

 

 

Figure 2. Predictability P(Al|Ca) with a 0.1 cut-off (see text). 

Map is centered along the Moon’s prime meridian. 
 

 

 

 

 

 

 

 

Figure 3. Predictability P(Fe|{Mg,Al}) with a 0.1 cut-off. 
 

 

 

 

 

 

 

 

Figure 4. Location of olivine as predicted by P(Fe|{Mg,Al}) 

– P(Fe|Mg) with a 0.2 cut-off (see text). A lunar surface 

background is added to help identify locations. 
 

2. Global distribution of olivine.  P(Fe|Mg) is rela-

tively good in the mare region, where there are high 

levels of mafic minerals. It is also relatively good in the 

highlands due to the very low Fe content (Fig 1b), 

which makes prediction easy without having to have a 

clear Mg-Fe relation. The prediction of Fe improves as 

we add the information of Al (i.e., P(Fe|{Mg,Al})), see 

Fig 3). Since Al is a good indicator of plagioclase, it 

informs the neural networks of the distribution of pla-

gioclase, and by inference, the distribution of its coun-

terpart: mafic minerals. Where the mafic minerals con-

sist primarily of only Fe and Mg, the P(Fe|{Mg,Al}) is 

expected to be high. Since olivine contains far less Ca 

and Al, the P gain from P(Fe|Mg) to P(Fe|{Mg,Al}) is 

mainly due to the large presence of olivine. Fig 4 

shows P(Fe|{Mg,Al}) – P(Fe|Mg) where its value is 

higher than 0.2. These are the areas where we expect to 

find relatively high concentrations of olivine. 
3. Global distribution of pyroxene.  Pyroxenes are 

the most complex mineral in terms of their chemical 

variability. Since most pyroxenes contain at least a few 

percent of other elements (Ca, Al, Ti, etc.), where 

P(Fe|{Mg,Al}) is poor (Fig 3), it indicates the presence 

of pyroxene. This does not include the small amount of 

pyroxenes containing virtually only Fe, Mg, Si and O. 

Many pairs of P from inputs with and without Ca are 

compared. Most of the time, the effect of adding Ca is 

rather small. We use P(Fe|{Mg,Al,Ca}) – 

P(Fe|{Mg,Al}) + P(Fe|{Ca,Al,Si}) – P(Fe|{Al,Si}) 

here to enhance the effect of Ca, and indicate the pos-

sible locations of high-Ca pyroxenes (Fig 5). A com-

parison between Fig 4 and 5 shows that the anorthositic 

crust of the near side contains mainly low-Ca pyroxene. 
 

Figure 5. Possible location of high-Ca pyroxenes as predict-

ed by P(Fe|{Mg,Al,Ca}) – P(Fe|{Mg,Al}) + P(Fe|{Ca,Al,Si}) 

– P(Fe|{Al,Si}) with a 0.4 cut-off. 
 

Conclusions:  We find that the global patterns of 

plagioclase and olivine distributions are in good 

agreement with Lemelin et al. (2016) [1]. We predict 

that high-Ca pyroxenes are distributed in relatively 

high amounts in the mare regions and SPA, whereas 

the near-side anorthositic crust contains mainly low-Ca 

pyroxenes. 
References: [1] Lemelin M. et al. (2016) LPSC 

XLVII, Abstract #2994. [2] Tompkins S. and Pieters C. 

M. (1999) Meteorit. Planet. Sci. 34, 25. [3] Greenha-

gen B. T. et al. (2010) Science 329, 1507-1509. [4] 

Paszke et al. (2017) In NIPS-W. 
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