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Premise: Several key aspects concerning the primary
differentiation and large-scale magmatic evolution of the
Moon are constrained by the petrogenesis of pristine lu-
nar sample suites. Recent modeling has relaxed the com-
monly applied “Mg# problem” to petrogenetic hypothe-
ses, which posits that equilibrium crystallization of man-
tle-derived melts cannot explain the high forsterite con-
tent of lunar troctolites [1]. Note however, that there are
two types of pristine lunar troctolites as distinguished by
spinel chemistry: “common” lunar troctolites +/- chro-
mite, and the volumetrically minor pink spinel-bearing
troctolite clasts (PST). [1] demonstrate that the lower
overall forsterite contents of common lunar troctolites
(Mg# < 90) can be explained via > 45% equilibrium crys-
tallization from mantle-derived and plagioclase-under-
saturated liquids derived from primordial mantle cumu-
lates produced during LMO (lunar magma ocean) crys-
tallization. Additionally, the generally higher forsterite
contents of PST require early plagioclase-saturation and
production of pink spinel, and are therefore reconciled
when considering the same Mg-suite primary melt inter-
acting with anorthositic crust (Fig. 1).

Fig. 1. Illustrating potential intru-
sions of Mg-suite primary melts
(blue-green) ponding at the base
of the lunar crust (white = crust;
gray = mantle) with possible
dikes and interaction with the
crust, creating contaminated re-
gions (pink) of a given intrusion
capable of yielding pink spinel
and PST. The slow diffusion rate
of Al in basaltic melts may re-
strict crustal contamination to the
margins of a given intrusion or
dike, resulting in a small total vol-
ume of PST-bearing melt regions.
The expected small volume of
PST-bearing  liquids  during
magma-wallrock interactions is
consistent with the small total
volume of PST clasts in the sam-
ple collection, and also the small
total volume of pink spinel-bear-
ing lithologies detected by orbital
remote sensing.

If the Mg-suite primary melt is derived solely from
primordial LMO ultramafic cumulates, and only later
modified through interaction with anorthositic crust or
KREEP, or both, several ramifications follow including:
a) crystallization ages of Mg-suite samples may be used

to constrain the onset and duration of cumulate mantle
overturn (CMO). CMO provides a mantle convection
mechanism for initially deep-seated primordial cumu-
lates to reach the surface, and simultaneously can ex-
plain high-degree (> 30%) pressure-release melting of
said cumulates in producing Mg-suite primary melts
[2-5].

b) the simplified Mg-suite equilibrium crystallization
model presented here precludes the more complicated
petrogenetic model of, and processes required to form
and later re-melt, hybridized source regions [2,4,5]
(Fig. 1).

¢) crystallization modeling of melts derived from ultra-
mafic LMO cumulates supports the hypothesis that
gabbronorites are not co-genetic to troctolites and nor-
ites [6,7]. If so, the differentiation trends and diversity
of lunar highlands lithologies needs to be redefined.
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Below, we review the classical differentiation trends
among the non-mare lunar highlands lithologies, and de-
tail results from our crystallization modeling. In contrast
to modern classification, we argue that model results es-
tablish new co-magmatic trends in the context of the sim-
plified Mg-suite petrogenetic model above, which ex-
clude most gabbronorite samples, but include ferroan
norites [7,8]. Additionally, our redefined Mg-suite differ-
entiation trend is capable of explaining the production of
some magnesian anorthosites and magnesian troctolitic
clasts within the meteorite collection [8,9].

Classical Differentiation Trends: Traditionally, the
pristine igneous highlands lithologies are comprised of
ferroan anorthosites (FAN), magnesian anorthosites
(MAN), magnesian-suite plutonic rocks (Mg-suite: troc-
tolites, PST, norites, and possibly gabbronorites),
KREEP basalts (enriched in K, rare earth elements, P),
and the alkali-suite [2]. Each highlands rock type above,
and associated co-magmatic trends, are most commonly
distinguished in composition by the anorthite content of
plagioclase (An#=molar [Ca/(Ca+Na+K) x 100] and
Mgf# of coexisting mafic silicates (molar [Mg/(Mg+Fe)]
x 100) (Fig. 2).

Modeled Crystallization Sequence of Mg-suite
Primary Liquids: We have modeled the crystallization
sequence and resulting mineralogy of newly estimated
Mg-suite parent magmas [1] (in equilibrium with liqui-
dus olivine of Mg#~95) using the SPICEs (Simulating
Planetary Igneous Crystallization Environments) matlab
crystallization code [10]. The Mg-suite primary melt
yields Fo89.1 olivine and An97.5 plagioclase (+
chromian spinel) after ~53% olivine fractionation. The
resulting troctolite assemblage is consistent with the most
primitive, commonly found lunar troctolites in the Apollo
collection. Continued pure equilibrium crystallization re-
sults in only minor variation in Mg# and plagioclase with
An# ~92 due to the initially low bulk Na,O content of the
starting composition (~0.12 wt.%). On the other hand,
continued pure fractional crystallization results in a dra-
matic decrease in Mg# (< 30), whereas the An# of plagi-
oclase decreases to ~92 (Fig. 2).

The possible mineralogy resulting from the combined
equilibrium and fractional crystallization model of Mg-
suite primary liquids is inconsistent with a majority of
gabbronorite samples (Fig. 2). However, the crystalliza-
tion model is consistent with Apollo troctolites, Apollo
15, 17 norites, as well as the relatively understudied fer-
roan norites from [6] (Fig. 2), representing a redefinition
of the Mg-suite co-magmatic trend [7]. Additionally, the
crystallization trend is consistent with some MAN and
magnesian troctolite data from the meteorite collection
[9], which have yet to be definitively classified among
current differentiation trends. In light of the redefined
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Fig. 2. Lunar highlands lithologies relative to the Mg# of
mafic silicates vs. An# of co-existing plagioclase. Legend
provided, and FAN = ferroan anorthosite suite. PST contain
the most forsteritic olivine compositions among all lunar
troctolites and Mg-suite samples. Black star and arrow rep-
resent crystallization trend of primitive KREEP basalt, and
white star with blue-green arrows represent equilibrium
(solid arrow) and fractional (dashed arrow) crystallization
models. Taken together, the modeled equilibrium and frac-
tional Mg-suite trends do not appear to reproduce gab-
bronorite mineralogy, but do include ferroan norites (trian-
gles) [all data from [2,6] and references therein].

Mg-suite co-magmatic trend presented here, the primi-
tive KREEP basalt crystallization sequence from [11] ap-
pears consistent with some norites and the gabbronorite
samples excluded from the Mg-suite primary crystalliza-
tion trend defined in Fig. 2.

Conclusions: The simplified Mg-suite equilibrium

crystallization model of [1] dramatically shifts the classi-
cal interpretation of the lunar highlands, and can poten-
tially explain the production of presently unclassified
meteorite data not grouping within current differentiation
trends. If so, the co-magmatic trends and diversity of lu-
nar highlands lithologies may need to be redefined. Ex-
perimental investigations are underway to substantiate or
refine the model results.
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