
ANALYTIC MODEL FOR THE EQUILIBRIUM TEMPERATURE DISTRIBUTION OF A SUNLIT GAUSSIAN AIR-
LESS SURFACE L. Rubanenko1, N. Schörghofer2 and D. A. Paige1 1University of California, Los Angeles, CA, USA, 2Planetary
Science Institute, Tucson, AZ, USA (liorr@ucla.edu)

Introduction: Insolation dominates the heat balance on
sunlit airless surfaces compared to scattered and emitted ra-
diation from nearby slopes and subsurface heat diffusion [1].
Surface slopes affect the temperature distribution by decreas-
ing the downward component of the flux vector and affects the
directional scattering in high phase angles. In order to account
for these effects, thermophysical models often include an il-
lumination component in which scattering and shadowing are
calculated using computationally extensive techniques such as
ray-tracing [2, 3, 4]. Here we derive an analytic thermophysical
rough surface model that assumes normally distributed slopes
and Lambert scattering that calculates the surface temperature
distribution from its slope distribution

Our statistical roughness model: A Gaussian surface is a
common way to model roughness statistically. Elevation and
the slope in each direction are distributed Gaussian and uncor-
related with one another [5, 6, 3, 1]. Each slope on the surface is
described by the bidirectional slope vector ~swhose components
(p, q), the directional slopes, are normally distributed [5]. The
slope magnitude is calculated as |~s| ≡ s =

√
p2 + q2 = tanα,

where α is the slope angle. The compass direction the slope is
facing is the slope aspect θ = arctan q/p, defined as the an-
gle between the projection of the slope normal on the reference
plane and the positive direction of the y-axis (north) measured
clockwise. Since p, q are normally distributed, we may trivially
find the distribution of the slope angle α,

fα(α) =
tanα

ω2 cos2 α
exp

(
− tan2 α

2ω2

)
(1)

where ω is the root mean square (RMS) slope.
Linking Roughness and Temperature: The solar radia-

tion reaching a sunlit slope depends on the solar incidence an-
gle Θ who is defined with respect to the slope normal vector,

cos Θ = cos z cosα+ sin z sinα cos(θ − as) (2)

where z is the solar zenith angle, as is the solar azimuth angle
and θ is the slope aspect. The flux reaching each slope on the
surface depends on the cosine of the incidence angle and the
distance to the sun r,

F =
S0 (1−A)

(r/1 AU)
2 cos Θ ≡ β cos Θ (3)

where S0 = 1367 Wm−2 is the average solar constant at 1AU
and A is the surface albedo. Finally, the equilibrium tempera-
ture may be derived from the incident flux assuming the surface
is a black-body with emissivity ε,

F = σεT 4 (4)

where σ = 5.67 × 10−8 W m−2K−4 is the Stefan-Boltzman
constant. Throughout this work, we assume radiative equilib-
rium, A = 0.1 and ε = 0.95 as representative values for the
bond albedo and emissivity of the lunar surface.

Symbol Definition
α The slope angle
p, q The directional slopes
ω The root mean square slope
Θ Slope incidence angle
z Solar zenith angle
as Solar azimuth angle
S0 The solar constant at 1 AU

Table 1: Symbols used in this work and their definitions.

Figure 1: The incidence angle distribution (Panel a) and equi-
librium temperature distribution (Panel b) for a rough surface
with a Gaussian slope distribution, with RMS slope angle 45◦

and zero zenith angle. The distributions computed by our an-
alytic model (blue line) match the numerically modeled distri-
bution (orange bars).

Special case: Sun in zenith: At zenith, the solar incidence
angle equals the slope angle (Eq. 2), and the distribution of
incidence angles is the same as in Eq. 1 with Θ = α. Using
change of variables, we derive the flux distribution and the re-
sulting temperature distribution for a rough surface when the
Sun is in zenith,

fT (T ) =
4

ω2ρ2T 9
exp

(
− 1

2ω2

1− ρ2T 8

ρ2T 8

)
(5)

In Figure 1 we validate our model with a numerical illumina-
tion model [4] by simulating a rough random surface with RMS
slope angle 45◦.

We additionally derive a useful expression for the distri-
bution of emitted flux; the flux distribution Fe as seen by an
observer found at some angle γ measured from the zenith. As-
suming small slope angles, this distribution is given by,
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Figure 2: The average flux emitted from a rough surface de-
pends on the observation angle γ measured from zenith (Eq. 7).
Since we do not account for mutual shadowing, the flux slightly
increases for highly oblique observation angles. The range in
which this becomes important is indicated by the dashed line.
For higher RMS slope the derivative near 0 is not zero due to
our small angle approximation.

fFe
=
Fe − β cos γ

ω2β2 sin2 γ
exp

(
− (Fe − β cos γ)

2

2ω2β2 sin2 γ

)
(6)

The expected value of this flux is given by,

F̄e =
√

2ωβ sin γ ·
[
Γ

(
3

2
,

cot2 γ

2ω2

)
−
√
π

2

]
−

β cos γ ·
[
Γ

(
1,

cot2 γ

2ω2

)
− 1

] (7)

Figure 2 shows the average flux reaching an observer found
at an observation angle γ from zenith. Per our assumption of
Lambertian scattering, the observed decrease in flux for a flat
surface is given the cosine of the observation angle. Addition-
ally, since we do not account for mutual obscurations, the mean
flux increases for oblique observation angles. This model arti-
fact is indicated by the dashed lines in Figure 7. In the future,
we hope to overcome this by accounting for mutual shadowing.

General case: For zenith angles z 6= 0, the solar azimuth
term in Eq. 2 does not cancel out. Consequently, calculating
the incidence angle distribution is no longer trivial, and solving
an integral with no closed-form solution,

I =

∫ b

a

[(x− a) (b− x)]
− 1

2

x3
e−

1
2ω2x2 dx (8)

where a = cos(Θ − z) and b = cos(Θ + z). Here we solve
it numerically, hoping to obtain a series solution in the future.
An analytic series solution will not only surpass extensive nu-
merical models in computation speed, but will also allow us

5 10 15 20 25

RMS slope angle

0

10

20

30

40

50

60

70

80

90

In
c
id

e
n
c
e
 a

n
g
le

 (
d
e
g
)

0

1

2

3

4

5

6

7

8

9

10

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y
 F

u
n

c
ti
o

n

Figure 3: The 2-D probability density function for different
RMS slope angles and incidence angles and z = 25◦. For flat-
ter surfaces (lower RMS slope), the incidence angle distribution
converges to the solar zenith angle.

to further investigate our parameter space. Figure 3 shows the
incidence angle probability density function for various RMS
slope angles and z = 25◦. For flatter surfaces (lower RMS
slope), the incidence angle distribution converges to the solar
zenith angle, as expected.
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