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Introduction: The ExoMars Rover [1], with a pri-

mary science goal of searching for signs of past and 

present life on Mars, will launch in mid-2020, and land 

at the Oxia Planum [2] site in early 2021. To support 

ExoMars Rover landing site selection, we used a deep-

learning (e.g., [3]), terrain-characterisation system to 

analyse HiRISE [4] images, and hence produce maps 

of terrain types for the final two ExoMars candidate 

landing sites: Oxia Planum and Mawrth Valles [2]. The 

terrain classes were defined by the NOAH-H science 

team based on perceived traversability. The system was 

then ‘trained’ by providing it with ‘labelled’ examples 

of the various ontological classes. NOAH-H proved 

effective at distinguishing between terrain types, and 

was particularly good at identifying aeolian bedforms, 

fractured bedrock, and boulder fields. 

Approach: Automated image analysis is a broad 

field which includes many challenging sub-tasks such 

as image classification, object detection and object 

segmentation. In NOAH-H we framed the task of ter-

rain classification as an object segmentation problem 

where the goal is to classify each pixel in a HiRISE 

image according to a prescribed ontology defined by 

the science team. Deep learning [3] based neural net-

works provide large scale, high-dimensional, non-

linear function approximation - in this case image pix-

els to geological class labels - derived by learning from 

existing labelled datasets.  

To train the networks we used a tool developed as 

part of the parent NOAH (Novelty or Anomaly Hunter) 

project called the Dataset Annotation Tool (DAT [5]) 

to allow the science team to manually label subsets of 

pixel-class pairs in small ‘framelets’ of the larger 

HiRISE images. Framelets were chosen to provide rep-

resentative coverage of the landing site areas. In total, 

DAT was used to label ~236×106 pixels across 1500 

framelets. This dataset was used to train a variety of 

deep learning networks including well known back-

bone Convolutional Neural Network elements such as 

VGG16 (e.g., [6]) and ResNet101 (e.g., [7]).  

The ontological classes selected were based on tra-

versability considerations, rather than perceived geo-

logical origin or morphological landform type. The 

classes were informed by previous studies (e.g., [8]) 

but tailored for the terrains in the ExoMars candidate 

sites. Four main groups of terrain type were used:  

(i) Bedrock. Clearly defined texture or relief sug-

gesting outcrop. Sub-divided into ‘Rugged’, ‘Tex-

tured’, or ‘Smooth’ depending on the degree of metre-

scale relief, and ‘fractured’ if containing polygonal, 

rectilinear or linear fractures.  

(ii) Non-bedrock. No evidence of outcrop, inter-

preted to be regolith or loose materials but without 

bedforms or other definitive indications of aeolian 

origin. Sub-divided into ‘Non-bedrock Smooth’ or 

‘Non-bedrock Textured’ depending on the visibility of 

morphological texture, and ‘Non-bedrock smooth line-

ated’, a class describing dark, mass-wasting deposits 

associated with scarps or impact crater rims.  

(iii) Aeolian materials, defined by the presence of 

bedforms. Sub-divided into ‘rectilinear large ripples’, 

‘simple isolated ripples’, ‘simple, continuous ripples’, 

(which describe types and spatial extents of TARs [9] 

which are likely to be impassable for the Rover) and 

‘continuous small ripples’, non-continuous ripples–

bedrock’, and ‘non-continuous ripples–non-bedrock’, 

(which describe smaller aeolian bedforms that might or 

might not be traversable [10]). 

(iv) Boulder fields. Identifiable by their isolated na-

ture, relief and defined shadows.  

Both landing sites had almost full coverage by 

HiRISE images. From these, we selected 12 (Oxia) and 

18 (Mawrth) images for NOAH-H analysis, based on 

criteria of low-noise, full resolution (~25 cm/pixel) and 

central coverage of the landing ellipse. Post-processing 

of the NOAH-H output included downsampling to 

2m/pixel and conversion to colour classes for analysis. 

Results: The NOAH-H tool produced reliable, us-

able outputs that informed understanding of the two 

candidate sites, and matched closely with manual, ex-

pert-assessment mapping [2]. The results are useful for 

traversability studies, and also for science. NOAH-H 

revealed a higher proportion of bedrock in Oxia than 

Mawrth, revealed areas within each site where aeolian 

bedforms were more or less common, and was able to 

discriminate between continuous and non-continuous, 

and large and small, bedforms. It also picked out frac-

tured bedrock areas (which correlate to some extent 

with clay-bearing units). 

Discussion: The output for Mawrth Vallis was gen-

erally consistent from one HiRISE image to another, 

but in Oxia Planum there was more variability. This is 

partly due to the low relief in Oxia, and the resulting 

difficulty in differentiating between subtly different 

morphological classes. When similar classes were 

combined, the variability was almost entirely removed.  
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Fig. 1. NOAH-H Oxia Planum example and input 

HiRISE (ESP_044178_1985). Credit NASA/JPL/UoA. 

 

NOAH-H gave the best results for morphologically 

distinct classes. The least well-identified classes were 

non-fractured ‘bedrock’ classes. This could be due to 

human difficulty in defining  and/or labelling discrete 

and unique classes from a continuous spectrum of land-

scape form, and also the effects that subtle differences 

in lighting, noise, or look-angle can have on the ability 

of the NOAH-H tool to recognize different classes. 

 

 
Fig. 2. NOAH-H Mawrth Vallis example and input 

HiRISE (ESP_046459_2025). Credit NASA/JPL/UoA. 
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