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Liquid water oceans in the universe may be far more stable, long-lived, and abundant than 
previously thought. This conjecture is not simply an extrapolation from surprising recent discoveries in 
our Solar System. Rather, it comes from considerations of the internal fluid dynamical response of a 
generic ocean to tidal forces, and feedbacks from this response that stabilize ocean parameters against 
secular trends. Relatively basic dynamical arguments are combined to show that attempting to freeze or 
stratify an ocean pushes it toward a resonant state, with an increase in dissipative heating and mixing that 
counters these trends and stabilizes the ocean over long periods of time. The aim of this presentation is to 
provide a short and simple description and demonstration of this important dynamical effect for the broad 
community currently developing a path forward in the investigation of ocean worlds.   

To illustrate the self-tuning effect, we integrate (using an explicit Runge-Kutta method) over non-
dimensional time 𝑡′ a simple ice-growth model of the form !!!

!!!
= 𝑘!𝑃!"#$% + 𝑘!𝑐!!𝑃!"#$% − 𝑘!𝑃!""# , where 

𝑃!"#$% = 𝑒!!! is an exponentially decaying (e.g. radiogenic or solid-tidal) heat source,  𝑃!""# = 1/ℎ! 
represents a simple (e.g. conductive) cooling, and 𝑃!"#$% is the non-dimensional ocean tidal power 
calculated using the TROPF software package (see Abstract # 2883 by this author). The 
dimensionalization of time as well as the choice of coefficients 𝑘!!!,!,! depend on the specific case. For 
the generic illustration here, we arbitrarily choose 𝑘! = 1,  𝑘! = 𝑘!/ℎ!(𝑡! = 0), 𝑘! = 2×10!𝑘!. (The 
basic points we wish to illustrate will be robust provided the dimensionalized tidal power is strong 
enough to counterbalance the dimensionalized cooling and that the time span is long enough for the 
𝑃!"#$% source to decay below these levels.) One may view the terms 𝑃 as representing average power 
density per volume, with the factors 𝑘!, 𝑘! incorporating the constant radial integration factors. The tidal 
term, however, has the additional factor 𝑐!! (as discussed next) to account for the variation with time of 
the ocean depth over which this source is integrated. 

The tidal power 𝑃!"#$% depends on the tidal force, but also the parameters controlling the ocean’s 
tidal response. We consider first the simplest case for forcing which is the situation of the ocean spinning 
rapidly relative to the orbit of a tide raising body in a circular, equatorial orbit. In this case, the force is 
represented by simply one propagating spherical harmonic term (a degree-two spherical harmonic 
propagating across the ocean in the retrograde sense with twice the ocean’s rotation frequency. We 
assume in this case that the ocean’s response is governed by the Laplace Tidal Equations, with dissipation 
proportional to the kinetic energy density, and varies with two parameters 𝑇, 𝑐!!, where 𝑇 is the ratio of 
dissipation and tidal-period time scales, and 𝑐! is the ratio of ocean wave speed to twice the equatorial 
rotation speed. TROPF is then used to calculate 261522 solutions sampling the tidal response over a range 
of 𝑇, 𝑐!!. For each pair, the time/globe averaged power (heating rate) is plotted to produce Figure 1 A. The 
first result from this figure is that the solutions include both very low and very high power tidal scenarios 
that depend sensitively on the input parameters 𝑇, 𝑐!!.  

Under the assumption of barotropic tides, 𝑐!! is proportional to the ocean’s fractional thickness ℎ 
(the total water+ice thickness is ℎ + ℎ! = 1) and the dependence of 𝑐!! on the evolving ice thickness is 
then 𝑐!! = (1 − ℎ!)𝑐!!(𝑡! = 0). We also assume here that as the ice thickens, this has stronger damping on 
the ocean tides, decreasing 𝑇. For the example here, we assume the simple linear dependence 𝑇 = (1 −
ℎ!)𝑇(𝑡! = 0) which represents extreme overdamping as the ocean approaches a fully frozen state. The 
second result (shown in Fig 1 A,B,C) is that instead of continuing to freeze as 𝑃!"#$% decays, the ocean 
tides increase in power to ultimately stall freezing near a resonant configuration, with the ocean 
parameters and heating becoming remarkably stable following this adjustment. 

Of course, the final fraction of ice as well as the evolution path depends on the relative values of 
these arbitrarily assigned parameters. Increasing the relative amplitude of the tidal-power can lead to a 
stable ocean with less ice, and vice versa. If damping is assumed to increase more quickly with ice 
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thickness than in the model assumed here, we can expect the path arm leading from the asterix in Fig. 1A 
to rotate toward the 9:00 position. Whereas with damping independent of ice it would rotate toward the 
6:00 position. In any case, the secular freezing causes a migration that leads to increased tidal heating and 
the precise point of equilibrium is rather a detail in the concept we wish to convey here. 

Conclusion: When considering the preponderance and stability of liquid water oceans in the 
Solar System and beyond, and for constructing an efficient research path forward for ocean worlds, self-
tuned tidal resonance should be included and closely examined. Basic dynamics as well as the 
demonstration provided here suggest that oceans in systems with even weak tidal forces are remarkably 
hard to freeze. This has a large impact on our starting assumptions for ocean worlds on icy satellites in the 
Solar System, as well on exoplanets and interstellar nomads.   

Figure 1: A: Nondimensional tidal heating rate (i.e. ocean depth-integrated power 𝑐!!𝑃 on a log10 scale) 
as a function of the ocean’s nondimensional squared wave speed (𝑐!!) and dissipation timescale ( 𝑇). 
Here, barotropic tides are assumed, in which case 𝑐!! is proportional to the ocean’s fractional thickness ℎ 
(the total water+ice thickness is ℎ + ℎ! = 1). Superimposed is an example evolution path of an ocean 
with initial parameter coordinates (asterix) for which there is small tidal heat contribution. Initially, the 
ocean has negligible ice (ℎ!(𝑡! = 0) = 10!!) and is maintained by a source (labeled ‘radio’ in C) that 
decays exponentially with time and leads to a tendency for secular cooling, ice growth and therefore a 
migration toward lower ℎ and  𝑐!!. There is also the tendency to migrate toward lower 𝑇 as it is assumed 
that damping increases with ice thickness. The migration is stalled at a point where increased tidal heat 
counters the cooling. This self-tuned effect is remarkable in stabilizing the ocean state and power/heat 
delivered (as seen in B and C), in contrast to radiogenic or solid tidal heat sources which typically show a 
continual decay with time. 	
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