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Background: Crater production/equilibrium. Im-

pact cratering is a dominant surface process on the 

Moon and its record has long been used to analyze and 

date planetary surface processes. The rate of crater 

formation is typically approximated by a crater produc-

tion function which defines the number of craters pro-

duced per unit area over time. The lunar production 

function is often described by a polynomial function 

[1,2], but can also be approximated by a power law [3].  

As cratering continues over time, the observed cu-

mulative size-frequency distribution (CSFD) of a given 

surface area may reach a state where the observed 

CSFD no longer matches the SFD of the production 

function [4,5]. Instead, the CSFD may follow a func-

tion of crater equilibrium. This function is usually de-

scribed by a power law [3-6]. 

Crater obliteration. Crater equilibrium occurs 

when craters of a given size are erased at the same rate 

they are produced [4,5]. This condition arises as a nat-

ural consequence of the cratering process, as the for-

mation of each new crater contributes to the erasure of 

old craters. The total number of produced craters on a 

planetary surface unit in equilibrium may be higher 

than the number of craters that can be observed.  

On the lunar maria, modeling and CSFD observa-

tions suggest that crater erasure is dominated by diffu-

sive degradation [7,8]. Diffusive degradation causes 

simple post-mare craters to lose their rims and become 

shallower over time until they can no longer be distin-

guished from the surrounding terrain. Crater equilibri-

um observed in D≲200 m is likely controlled by dif-
fusive degradation [7-10].  

In contrast to the small simple craters of the lunar 

maria, a different effect may dominate crater erasure on 

the densely cratered lunar highlands. Investigations of 

lunar basins show a mismatch between the expected 

crater production function and obtained CSFDs for 

Nectarian and pre-Nectarian basins that occurs at size 

ranges larger than the sizes noticeably affected by 

crater equilibrium (wherein the CSFD follows an equi-

librium function [11-13]). The findings of [13] suggest 

that this is due to a non-sparseness effect as described 

by [14]. Non-sparseness occurs when multiple large 

impacts obliterate smaller craters on impact. As a con-

sequence, multiple large impacts cause large-scale re-

surfacing events which eventually results in a mismatch 

between the crater production and observed CSFD due 

to the presence of different surface units.  

Modeling a pre-Nectarian surface unit:  We use 

the Monte Carlo code CTEM [15-17] to simulate a 

globally cratered surface. Crater production is deter-

mined by a crater production function given by [2] and 

the generated impact craters have diameters of 15-905 

km. The number of craters is determined by a visibility 

function (for details, see [17]). New craters of radius ř 

contribute to the diffusive degradation state K (with 

units m2) over a circular region of radius feř  by the 

degradation function [8, 17]:   

Kd(ř) = Kd,1řψ, 

where Kd,1 determines the relative importance of diffu-

sive degradation and ψ determines the slope of the per-

crater degradation power law. In our simulations we 

use fe=10 and ψ = 2 [17].  

For simulated heavily-cratered surfaces in CTEM, 

the lower the low value of Kd,1 the more crater erasure 

is dominated by direct overlap (i.e. “cookie-cutting”) 

rather than by diffusive degradation. We ran three sim-

ulations using different levels of diffusivity to investi-

gate the effects of diffusive degradation on the evolu-

tion of a lunar highland-like terrain: (1) Kd,1 = 0.003 

m², which corresponds to a value constrained from 

observations of D≲200 m simple post-mare craters as 

investigated by [17], (2) Kd,1 = 0.0001 m² to represent 

a very low amount of diffusive degradation, and (3) 

Kd,1 = 0, which implies that no diffusive degradation 

contributes to crater erasure during the simulation. The 

resulting datasets are analyzed using traditional crater 

counting (TCC) and non-sparseness correction (NSC) 

[14] CSFD measurement techniques. We used a modi-

fied version of CSFD Tools [18] to allow CSFD anal-

yses from Cartesian measurements.   

Results:  We use the observations by [13] to inves-

tigate the role of diffusive degradation in the formation 

of a pre-Nectarian lunar surface. To this end, we ap-

plied TCC and NSC techniques to our modeled impact 

crater records and investigated the shapes of the result-

ing CSFDs. The results are summarized in Fig. 1.  
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Figure 1:  CSFDs resulting from TCC (red) and NSC (green) measurement techniques for different degradation 

values. Isochrons of the Neukum [2] production function with corresponding model ages are shown in grey.    

 

The simulation using the mare-constrained value 

Kd,1 = 0.003 m² (Fig. 1a) [17] yields a CSFD which 

mostly does not match either the production function or 

observations of CSFDs of pre-Nectarian units [11-13]. 

The same is true for our simulation where Kd,1 = 

0.0001 m² (Fig. 1b), however, the simulatied CSFD is 

less inconsistent than Kd,1 = 0.003 m², and we observed 

a minor non-sparseness effect due to the stronger influ-

ence of geometric obliteration effects in this simula-

tion. The Kd,1 = 0 simulation (Fig. 1c) yields CSFDs 

that are largely consistent with the Neukum production 

function. We see a notable non-sparseness effect in the 

CSFD from TCC that can be corrected by applying the 

NSC technique. Since this is consistent with the lunar 

highland observations by [13], we consider this diffu-

sion level realistic for simulating a pre-Nectarian sur-

face unit at the given crater sizes.  

Conclusions:  While diffusive degradation domi-

nates crater erasure on the lunar maria, our simulations 

suggest that the erasure of craters >15 km on pre-

Nectarian surface units is dominated by the geometric 

overprint of small craters by large craters. This indi-

cates that crater erasure is much more strongly scale 

dependent than that expected from diffusive processes. 

To further quantify our observations, additional inves-

tigations on crater equilibrium on pre-Nectarian surface 

units and the transition between cookie-cutting and 

diffusion dominated crater equilibrium need to be con-

ducted.  

We also show that the use of non-sparseness cor-

rection results in a better match between the observed 

CSFD and the production function. This result is con-

sistent with the argument of [13] that the apparent dif-

ference between the CSFD of ancient heavily-cratered 

lunar highlands and the Neukum production function is 

due to crater obliteration effects rather than due to a 

change in the production function. 
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