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Introduction: Chemical map datasets produced by      
X-ray microanalytical methods are very large in terms       
of data volume, and are difficult to completely       
characterize manually. Such image data are routinely      
produced in electron beam microanalysis (SEM-EDS,     
EPMA), using synchrotron X-ray sources, and by      
particle-induced X-ray emission.

These datasets are very large, and difficult to        
completely characterize manually. EDS image stacks      
provide a rich set of features that can be exploited by           
machine learning algorithms to augment traditional      
analysis. We demonstrate an automated workflow that       
uses hierarchical clustering to automatically separate      
dominant mineral phases. This is an unsupervised       
approach requiring minimal user input intended to       
provide quantitative exploratory assessment of sample      
mineralogy. 

Sample Description:  Northwest Africa 7257 is an 
enriched shergottite consisting dominantly of elongate 
euhedral to subhedral pyroxene laths (containing a       
mixture of zoned pigeonite with distinct ferropigeonite       
rims or overgrowths, and interstitial maskelyntized      
plagioclase (Table 1). Other phases include subcalcic       
augite, ilmenite, Fe-Cr-Ti spinel, pyrrhotite,     
chlorapatite, merrillite, K-rich melt pockets, and rare       
baddeleyite and fayalite [1]. 

Methods: Backscattered electron (BSE) imagery     
(Figure 1a) and EDS X-ray spectra were acquired for a          
polished thin section of NWA 7257 using a JEOL         
JSM-7001F scanning electron microscope with Oxford      
X-max detector. The X-ray spectra were sampled to       
produce images which map the intensity of individual       
elements (Al, C, Ca, Fe, K, Mg, Na, O, P, S, Si, Ti,            
Zr).

The complete workflow for transforming raw EDS       
images is depicted in Figure 2. The workflow is         

automated using Python scripts and the SciPy [2] and         
scikit-learn [3] libraries. The assembled images are       
preprocessed to enhance contrast which normalizes      
intensity values within [0, 1]. The image stack is         
smoothed by applying a median filter to reduce noise.         
The images are stacked, so each pixel is associated         
with a 13-dimensional feature vector associated with       
the different EDS components.  

The preprocessed data is passed to the HDBScan        
algorithm [4]. This projects each point into data space,         
and searches for significant regions of higher density        
(clusters) and separates them from lower density       
regions (noise). This density based approach enables       
rare minerals with relatively few points to be located.         
This approach allows for clusters of variable density to         
be identified, allowing for minerals with different       
component distributions. HDBScan also requires only      
one parameter, min_cluster_size , that indicates the      
smallest number of pixels that could belong to a         
relevant cluster. 

The initial clustering can group together minerals       
of similar character. In particular, the pigeonite grains        
have distinct rims and cores that vary slightly in         
relative amounts of Fe and Mg. These groups are         
further separated using the KMeans [5] partitioning       
algorithm.  

Results: The final clustering results are shown for        
a sub-region of the entire dataset in Figure 1c. The          
assigned clusters align with mineral grain boundaries,       
and the cluster assignment has low noise. In order to          
interpret minerals, the distribution of the EDS       
components belonging to each assigned cluster was       
extracted, and plotted in Figure 3. These box plots         
depict the statistical distribution of cluster EDS       
components, which can be interpreted to determine the        
mineralogical significance. Cluster 1 has elevated C,       
Si, O and trace amounts of other elements with a wide           

Figure 1. A) Contrast-enhanced BSE image of the NWA 7257 thin section. The 200⨉200 px subregion used in this study is 
indicated by the red  square. B) Subregion used for this study. C) Results of hierarchical clustering applied to the test region. 
Pixels are grouped into clusters based on their density in data space. 
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compositional range, suggesting epoxy and melt      
boundaries. Cluster 2 has Ca, Mg, P and O indicating          
merrillite. Cluster 3 contains only Fe, Ti and O         
suggesting ilmenite. Cluster 4 has high Fe and S         
indicating iron sulphides, likely pyrrhotite. Cluster 5       
has Al, Na, O and Si suggesting plagioclase feldspar or          
its maskelynitized equivalent. Cluster 6 has Al, Ca,        
Na, O and Si which matches a calcic plagioclase,         
converted here to maskelynite. Cluster 7 has Al, K, Na,          
O and Si which could be high-K silicate melt. Cluster          
8 and 9 represent the pyroxene laths. The cores         
(cluster 8) have slightly lower Fe and Ca, and higher          
Mg than the overgrowths/rims (cluster 9). These       
results are summarized in Table 1. 

Discussion: This demonstrates an automated     
workflow for mineralogical analysis of shergottite      
EDS data. This processing requires minimal user       
input, and provides interpretable output. This      
exploratory analysis can be used to quickly identify        
abundances and relatively rare mineral species. 

References: [1] Irving A. J. et al., (2012) 75th         
Meteoritical Society Meeting [2] Jones, E. et al. (2001)         
SciPy: Open Source Scientific Tools for Python,       
http://www.scipy.org/. [3] Pedregosa, F. et al. (2011) JMLR       
12, 2825–2830. [4] Campello R.J.G.B. et al., (2013)        
Advances in Knowledge Discovery and Data Mining .       
PAKDD 2013. Lecture Notes in Computer Science, vol        
7819. [5] Lloyd, Stuart P. (1982) Information Theory , IEEE         
Transactions 28.2, 129-137.  

Mineral Formula/elements Cluster ID 

Ferro-pigeonite (Mg,Fe,Ca)SiO3, 
Fe-rich 

8b 

Pigeonite (Mg,Fe,Ca)SiO3 8a 

Maskelynite (Ca,Na)(Al,Si)AlSi2O8 6 

Melt elevated Si and K 1 

Ilmenite FeTiO3 3 

Albite NaAlSi3O8 5 

Merrillite Ca9NaMg(PO4)7 2 

Pyrrhotite Fe1-xS 4 

Table 1: Mineral classes, formula and corresponding 
cluster IDs from Figure 3. 

Figure 3: Box plot showing distributions of individual EDS 
components for each of the extracted clusters.  Box plots 
represent the distribution using 5 summary numbers 
minimum,, first quartile (Q1), median, third quartile (Q3), 
maximum. 

Figure 2: Schematic of the hierarchical clustering workflow. 
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