
 
 

Figure 1: Hydrated mineral distribution in Terra Sirenum. Background is colourized MOLA (-500-3500 m). Location of 

cross section in Fig. 2 shown (A-A’). 
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Introduction:  Terra Sirenum, a region in the an-

cient southern highlands of Mars (southwest of the 

Tharsis volcanics) is unique in its density and diversity 

of orbitally-identified hydrated mineral deposits [1, 2, 

3]. It contains a large number of chloride deposits [4, 

5], sulphate minerals (gypsum, bassanite, kieserite, 

alunite, jarosite), clays (Al-rich as well as Fe/Mg 

clays), carbonate, and hydrated silica. Here, we con-

duct a thorough survey of CRISM data in the region, 

and use image and topography data to investigate the 

geological context of these diverse mineral detections 

in order to better understand the sources of water and 

ions that created these secondary minerals, and their 

spatial/temporal relationships. We find that sulphate 

and chloride detections are decoupled, and likely from 

independent water sources, indicating that there were 

either spatially distinct water reservoirs, or they oc-

curred at different times. 

Methods:  For this work, we use published chlo-

ride detections from Osterloo et al. 2010 (verified with 

THEMIS 875 DCS strips), a global CTX mosaic [6], 

HiRISE imagery where available, MOLA and HRSC 

data for relative elevation information, and CRISM 

targeted image cubes (110) and mapping tiles for min-

eral identification. We use an algorithm based on [7] to 

assign a probability of belonging to a certain mineral 

class to each pixel; for each image, the resulting spec-

tra and spatial patterns are verified manually. We use 

this technique as a method to identify rare minerals 

(small clusters of similar pixels), which could be 

missed using standard techniques such as band depth 

maps. Mineral detections are overlain on high-

resolution imagery (CTX and HiRISE) and elevation 

data to interpret their geologic context. 

Results and Interpretations:  Figure 1 depicts the 

locations of all CRISM images in the Terra Sirenum 

study area and the minerals detected therein, along with 

previously reported chloride detections.  

Clays.  Clay minerals are widespread at a wide 

range of elevations (see green and cyan markers, fig-

ures 1, 2). Most of the clay mineral detections are 

Fe/Mg clays, identified by their strong 2.3-um metal-

hydroxide absorption (e.g. [8]); Al-rich clays with a 

characteristic band centre at 2.2 um tend to be found 

either with sulphate minerals (e.g. Cross crater, Co-

lumbus crater), or at elevations above proximal Fe/Mg 

clays (e.g. [9]).  

Chlorides.  Chloride deposits (yellow markers, as 

identified by [4]) are also widespread and at a wide 

variety of elevations. They are most often found in 

local topographic lows, but are not observed within the 

regional deep basins (e.g. Columbus crater, Eridania 

palaeolake system). Instead, 2/3 of the chloride depos-

its appear to be “perched”—located in a local topo-

graphic low in the highlands, but above a deeper crater. 

Many deposits (~1/2) have sinuous features in high 

resolution imagery (CTX, HiRISE where available). 

High-quality CRISM data is available for 1/3 of the 

region’s chloride deposits. At the scale of CRISM reso-

lution, we do not observe any accessory carbonate or 

sulphate minerals associated with any of the chloride 

deposits. Instead, Fe/Mg clays are found proximal to 
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Figure 2: Regional cross section showing relative elevation of hydrated mineral 

deposits. (Alunite deposit between Columbus and Cross craters is newly identified).  

the chloride deposit in every place where CRISM data 

is available (including multispectral mapping tiles). 

Where the relationship is clear, the Fe/Mg clays under-

lie the chloride deposits. Since clay minerals are rela-

tively impermeable, it may be that these chloride de-

posits preferentially formed where clay minerals pre-

vented efficient drainage of surface waters. 

 We find that these observations (local lows, wide-

spread elevation distribution, sinuous features) are con-

sistent with a local surface water source for the chlo-

ride deposits, rather than groundwater upwelling. A 

deep groundwater source is not consistent with the lack 

of observed deposits in regional deep basins, nor with 

those observed at high elevations. Order of magnitude 

estimates indicate that a layer of typical Martian basalt 

[10] <10 cm thick across the study area would contain 

enough chloride to form the observed deposits; leach-

ing of basaltic material by surface waters could there-

fore reasonably concentrate the amount of chloride 

observed. A lack of association between chloride de-

posits and other salts (carbonates, sulphates) suggests 

that these deposits result from different hydrologic 

reservoirs, separated by space and/or time. Note that a 

lack of observed sulphate/carbonate at the orbital scale 

does not mean that no accessory salts are present with 

the chlorides in this region; only that they are not suffi-

ciently concentrated/abundant at the surface to be ob-

served at this scale.  

Sulphates.  Unlike clays and chlorides, orbital de-

tections of sulphate minerals in this region are limited 

to a few locations, typically around the edges of deep 

basins. While our survey did not find any additional 

kieserite or gypsum outside of previously-reported de-

posits in Columbus [3] and Cross [11, 12] craters, we 

did find a small number of additional alunite deposits 

within the study area, in craters in the northern part of 

our study area; see Figs. 1, 2. 

The observed sulphate deposits are restricted to 

deep basins, rather than being widespread through the 

highlands; this is consistent with a deep groundwater 

source, rather than surface water runoff. Order of mag-

nitude estimations indicate that a layer of typical Mar-

tian basalt <0.5 mm thick over our study area (or 1-2 

km3) contains enough sulphur 

for the observed deposits (as-

suming the deposits are 1 m 

thick). Therefore, sufficient 

sulphur ions could easily have 

been leached from the rock to 

generate the observed depos-

its—either through widespread 

low-level leaching and concen-

tration in a deep subsurface 

reservoir, or through intense 

focused leaching along fluid pathways. A concentrated 

sulphur source (such as a buried evaporite or pyrite 

body) is not required to explain the observed deposits. 

The presence of alunite in these deposits indicate that 

some of the sulphur-bearing waters were also acidic; on 

Earth, such sulphurous and acidic systems are often 

connected to a magmatic reservoir. 

Conclusions: While Terra Sirenum has a large 

concentration of both chloride and sulphate orbital 

mineral detections, these are decoupled in space and/or 

time. Chloride deposits are most consistent with sur-

face runoff of relatively sulphate-free waters (since no 

accessory sulphates were observed from orbital data). 

Chlorides are not observed in deep basins; this may be 

due to (1) post-depositional resurfacing/remobilization; 

(2) small volumes of water that did not spill over into 

deep craters; (3) lack of Fe/Mg clay to provide an im-

permeable substrate; or (4) they are  present, but not 

detectable in deep basins due to intimate mixing with 

sulphates or other minerals with strong absorptions in 

the visible-shortwave infrared part of the spectrum.  

On the other hand, sulphate minerals are restricted 

to deep crater basins; this distribution suggests a deep 

groundwater source. In our ongoing work, we are in-

vestigating plausible formation scenarios to determine 

how these separate hydrological reservoirs could 

evolve, and conducting further detailed analysis to de-

termine whether it is possible to ascertain the relative 

ages of these different processes.  
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