
Figure 1: (A) SE image of hotspot (red circle) with-

in DOM 08006 matrix. (B) NanoSIMS δ18O image 

with arrow indicating the oblate hotspot and enrich-

ment in 18O. 
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Introduction:  Supernovae (SNe) occur when a 

massive star falls out of hydrostatic equilibrium and its 

stellar core contracts, rebounds, and sends a shock 

wave propagating through the circumstellar envelope. 

The propagation of the shock wave triggers rapid nu-

cleosynthesis and results in a radial explosion away 

from the star. Solids condense in this ejected material, 

and some of these circumstellar grains are transported 

through the interstellar medium (ISM). A fraction of 

such grains are preserved in primitive materials such as 

meteorites.  

Information on the structure and chemistry of 

grains derived from SNe is still severely limited. To 

date, while >100 grains were identified based on their 

isotopic composition, only 10 of those were analyzed 

for detailed structure [1-6]. Nonetheless, these studies 

reveal diverse structures and morphologies, including 

single crystals, aggregates and amorphous phases, 

highlighting the varied chemical and physical condi-

tions in the ejecta of SNe. Messenger et al. [1] identi-

fied an aggregate of crystalline forsterite grains, with 

compositions consistent with the mixing of multiple 

supernova (SN) layers. Zega et al. [3] identified a sin-

gle crystal of hibonite with a crack extending through 

the grain, which could be an indication of a collision 

event. Other studies identified six amorphous grains: 

one with a composition consistent with stoichiometric 

enstatite, and five with non-stoichiometric silicate 

compositions including forsterite, diopside, Fe-rich 

silicates resembling glass with embedded metal and 

sulfide (GEMS) and a Ca-rich pyroxene [4-5]. Here we 

report on a SN silicate grain identified in the Dominion 

Range (DOM) 08006 CO3.0 chondrite. 

Methods:  Local isotopic enrichments (‘hotspots’) 

were identified via NanoSIMS raster-ion-imaging of C 

and O isotopes in a thin section of DOM 08006 and 

elemental compositions were provided by Auger spec-

troscopy [7]. We chose one anomalous hotspot, DOM-

35, thought to originate in SN ejecta for detailed chem-

ical and structural analysis using transmission electron 

microscopy (TEM). 

A cross-section of DOM-35 was prepared using es-

tablished focused-ion beam scanning-electron micros-

copy (FIB-SEM) techniques [8] with the FEI Helios 

G3 FIB located at the Lunar and Planetary Laboratory 

(LPL). The section was then analyzed with LPL’s 200 

keV aberration-corrected Hitachi HF5000 S/TEM. The 

HF5000 is equipped with secondary electron (SE) de-

tectors, scanning TEM (STEM)-based bright-field (BF) 

and dark-field (DF) imaging detectors, as well as an 

Oxford Instruments X-MaxN 100 TLE EDS system 

with dual 100 mm2 windowless silicon-drift detectors.  

Results: NanoSIMS analysis of a local area of 

DOM 08006 reveals enrichment in both 18O and 17O 

relative to solar system values, with 17O/16O= 4.0E-4 ± 

2.0E-5 and 18O/16O= 3.34E-3 ± 7.0E-6 [8], placing it in 

the group-4 field of presolar grains as defined by [9]. 

The O-anomaly has an oblate shape (Fig. 1), measuring 

roughly 235 × 235 nm, as confirmed by TEM data. 

TEM-EDS mapping of the overall FIB section re-

veals a matrix containing Si, O, Mg, Ca, Fe and large 

grains containing Fe and S. DOM-35 contains O, Mg, 

and Si, with localized enrichment in Fe and Ca (Fig. 2). 

Fe is enriched in the lower half and left and right sides 

of the anomaly.  

Selected-area electron-diffraction (SAED) patterns 

were acquired across the hotspot. The anomalous re-

gion DOM-35 is an olivine aggregate. The left part of 

this region is a single crystal of stoichiometric forster-

ite (Fo85). The right part of the anomaly is a polycrys-

talline assemblage as revealed by SAED patterns. 

Measurement of the patterns, together with EDS spec-

troscopy indicates an Fe-rich olivine (Fo65).  

Discussion: Constraining the thermodynamic con-

ditions under which SNe grains condense is challeng-

ing because SNe are highly energetic environments and 

the pressure and temperature conditions within them 

are poorly constrained. However, a few studies are 

available in the literature. For example, Fedkin et al. 

[10] used model compositions of thin layers of ejecta 

within the main burning zones of type-II SNe, comput-

ed by [11], to construct the chemical compositions of 

minerals condensed by equilibrium processes in 15-, 
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21- and 25-M☉ SNe. The resulting minerals, composi-

tions, sequences of condensation and temperatures of 

condensation are similar for all three masses [10]. Oli-

vine is a predicted condensate in the H, He/N, O/C, 

O/Ni and O/Si SN layers [10]. The compositions of the 

H and He/N layers are reducing because they are close 

to solar composition, therefore, forsterite is the favora-

ble condensate, and XFa cannot exceed 0.002 above 

1000 K. In the deeper, more O-rich zones forsterite is 

favorable between 1500 and 1600 K, and the fayalite 

content is between 0<XFa<0.03 due to the low atomic 

Fe/Mg ratio. Below these zones, temperatures are too 

low for the formation of silicates, despite abundant Fe0 

metal due to a low oxygen fugacity. In order to produce 

a more fayalitic composition, mixing between SN lay-

ers is required. Alternatively, Nozawa et al. [12] 

demonstrated that forsterite is a predicted condensate 

in both unmixed and mixed SN ejecta through non-

steady-state nucleation and grain growth.  

We can place constraints on the progenitor SNe of 

DOM-35 via comparison of the grain data to these 

models. In comparison to [10], the 16O/18O ratio of 

DOM-35 is most consistent with a 15 M☉ SN, and the 

stoichiometric (Fo85) single-crystal forsterite is con-

sistent with equilibrium condensation in a 15 to 25M☉ 

SN between 1063-1575 K. We note that Nozawa et al. 

[12] developed a model in which forsterite could con-

dense in unmixed SN ejecta through non-steady-state 

nucleation and grain growth. However, mixing between 

SN layers is required to produce the Fe-rich composi-

tion of the polycrystalline region of DOM-35 (Fo65). 

Moreover, astronomical observations of SNe remnants 

show that the ejecta are heterogeneous, clumpy, and 

large scale mixing is occurring, e.g. [13]. Thus, while 

we cannot completely rule out forsterite condensation 

in an unmixed zone of the progenitor star to DOM-35, 

it seems unlikely that both a single-crystal forsterite 

grain and Fe-rich polycrystalline olivine aggregate 

could otherwise accrete together without significant 

transport occurring within or between zones and hence 

mixing. 

 We note that only two other stoichiometric SN sili-

cates, B10A [1] and 2_4 [5], were previously identified 

in meteoritic samples. The data from both of these 

grains are consistent with equilibrium condensation, 

the former at 1560 K in a solar-metallicity star with a 

mass 15 M☉, but mixing was required to produce its 

Fo83 composition [1]. The single-crystal forsterite in 

DOM-35 is similar in crystal structure and chemical 

composition to SN grain B10A [1], but its isotopic 

composition is significantly different. Thus, while it is 

conceivable that the single-crystal forsterite in DOM-

35 formed under similar thermodynamic conditions as 

B10A, the data imply different nucleosynthetic origins. 
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Figure 2: EDS maps of DOM-35 with HAADF image 

showing anomalous region with red circle  for comparison. 
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