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Introduction: Visible and Near-Infrared (VNIR) spec-
troscopy (0.3-3 μm) has been utilized by both Observa-
toire pour la Minéralogie, l’Eau, les Glaces et l’Activité 
[1] and Compact Reconnaissance Imaging Spectrome-
ter for Mars (CRISM) [2] to elucidate the composition 
of the martian surface through the detection of diagnos-
tic absorptions attributed to iron-related electronic pro-
cesses, as well as overtones and combinations of funda-
mental stretching and bending vibrations (e.g., metal-
OH, H2O, and CO3

-2) [3,4]. 
Aided by the revised spectral parameters formulated 

by [5], these instruments have observed a wide array of 
minerals indicative of various formation environments 
once present on ancient Mars [6,7,8,9]. A RGB compo-
site, or “browse product”, is produced by combining 
three parameters, which allows for an observation-by-
observation inspection of the spatial distribution of key 
mineralogic absorptions. While this type of manual in-
spection is suitable for a small subset of observations, it 
is untenable for a global or even regional large-scale 
spectroscopic survey of the surface. 

 Automations of this process for large CRISM da-
tasets using methodologies differing from the one em-
ployed here have been demonstrated previously by [10-
13]. However, the proposed program will use a Deep 
Neural Network (DNN) to simplify the automation pro-
cess and enhance the versatility of surface mineral re-
search. A neural network approach has been used to de-
termine the temperature and single scattering albedo for 
each pixel in a group of CRISM scenes from 1-3.8 μm 
[14]. Unlike [14], the purpose of our program is to per-
form a whole-image survey to identify specific minerals 
in CRISM observations using defined parameters. Fig-
ure 1 shows a visualization of some surface mineral as-
semblages that the program is attempting to detect. 
Methods:  For the purpose of this abstract, two images 
from the Martian north polar region were utilized for the 
accuracy evaluation, but larger datasets will be pre-
sented at the conference. Specifically, we utilized un-
projected full-resolution targeted (FRT) products with 
identical pixel dimensionality with a spatial sampling of 
15-19m/pixel. TER (Targeted Empirical Records), 
which are post-processed using the pipeline highlighted 
in [15], were used in this study. 

The classifier program was developed in the Python 
language and is written with two primary modules: an 
image parsing and preprocessing module, and a DNN 
classifier module. A special challenge for the image par-
ser/preprocessor module is the formatting of the CRISM 

datasets. The image data are contained in two compo-
nent files: a .img file, which contains the pixel data, and 
a .hdr file, which contains information about the file, 
such as size, channel index names, etc. Our program uti-
lizes the GDAL package to open and read the image 
files [16]. The files are then processed into a 3-dimen-
sional array. Each channel is then scanned by the pre-
processor module using a very slow, yet highly accurate 
scanning algorithm to determine if an outcrop area is 
present. The scan parameters such as area and sensitiv-
ity are defined by the user when the program is run. Af-
ter scanning, the image data are compressed into a 2-
dimensional array and saved to the local hard drive 
along with the scan results. The scanning algorithm is 
only used for the purpose of creating training data for 
the DNN and evaluating the accuracy of the program 
overall. Only the parser portion of the module will be 
needed for mainstream use. 

 
Figure 1: Sample mineral indices from FTR0000406B 
(R:BD1300, G:OLINDEX3, B:SINDEX2). (A): The top 
80% of pixel index values. (B): The top 0.1% of pixel 
index values. 

The DNN classifier module is developed using Ten-
sorFlow. The saved data from the preprocessor are 
loaded and reshaped to the original 3-dimensional array. 
The DNN algorithm compares its evaluations for each 
channel to the results of the scan from the preprocessor 
algorithm and assesses the accuracy for each epoch. The 
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DNN then uses the accuracy to correct and optimize the 
neural network weights for each new epoch. The neural 
network produces a binary output for two classes: the 
image channel shows an outcrop for a corresponding in-
dex (1), or it does not (0). The neural network will be 
optimized for accuracy by iterating through different 
batch sizes and iterations. To test the effect of neural 
network hidden-layer structure on the accuracy of the 
DNN module, the neural network layers are each tested 
at different values, also using the optimized batch size 
and iteration data from the previous evaluation. 
Accuracy Results: The program was run with batch 
sizes ranging from 5 channels to 30 channels per batch 
in increments of 5 channels, and the number of epochs 
ranging from 1 to 20. At best, the accuracy of the pro-
gram’s training data was 100%, and the test data was 
91%. The accuracy results from the final iteration of 
each parameter were printed by the program and were 
then used for calibration and demonstrative purposes. 
Figure 2 shows the accuracy of the DNN module as a 
function of the batch size and number of iterations. 
From these plots, it becomes clear how consistent the 
training data and test data are with regards to accuracy. 
It is also obvious that the accuracy of the DNN module 
occasionally, and apparently randomly, drops to zero for 
both the training and test data. 

 
Figure 2: Variations of accuracy with respect to batch 
size (top) and the number of epochs used (bottom). 

To further optimize the DNN module, the module 
was evaluated again, iterating through different number 
of neurons present in the three hidden layers. This sec-
ond evaluation was performed using 100 iterations and 
a batch size of 60. This evaluation showed that a simpler 
neural network appears to be more favorable over more 
complex neural networks in regards to accuracy. These 

results are consistent with the average accuracy of the 
batch and epoch variation tests. 
Discussion: Referencing Figure 1, since the average ac-
curacy of each batch and each iteration are strongly var-
ying, but not consistent, it appears the accuracy of the 
DNN module itself is not dependent on these two vari-
ables. A potential means of improvement for the DNN 
is to address the generalized nature of the data. The min-
eral outcrops do not appear in the same areas of each 
image, nor do they follow the same visual pattern, which 
is difficult for the DNN to properly predict. This may be 
resolved by using more images to train the DNN in the 
future, which may increase the accuracy by further gen-
eralizing the weights of the neuron inputs. 

Furthermore, the DNN module of the network is un-
able to work with images of different sizes, which is 
problematic for analyzing all the CRISM data, because 
the CRISM images come in a variety of sizes. Using a 
resizing algorithm on the images would be problematic 
for accuracy. However, this can be resolved by convert-
ing to a Convolutional Neural Network (CNN), a type 
of Neural Network developed mainly for image analy-
sis. This should be more versatile with regards to image 
size, and should produce more accurate results. 
Conclusions: If the improvements discussed above are 
implemented in the program, the neural network classi-
fier will be ready for widespread use among researchers 
needing such a tool. Many of these changes should be 
complete by the time of presentation. Future work on 
this program, in addition to implementing the improve-
ments above, could include expanding the usability of 
the program to other types of CRISM data, including the 
ability to classify mineral assemblages based on spectral 
parameters, which will allow for more versatility for 
identifying rare minerals. 
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