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Introduction:  Lunar ferroan anorthosite (FAN) 62236 is 

a 57.3 gram rock sample collected from the rim of Buster 

Crater by Apollo 16 [1]. 62236 has been previously described 

as ‘pristine’ due to its lack of meteoritic components [2]; how-

ever, its original cumulate texture has been subsequently mod-

ified to that of a cataclastic breccia and has been moderately 

to heavily shocked [3] (Fig.1). 62236 is one of a suite of FANs 

that have been radiometrically age dated using the Sm-Nd iso-

topic system, and it yields a crystallization age of 4.29±0.06 

Ga [4], which is the youngest FAN sample currently dated. 

This is a young age for what is hypothesized to be a sample of 

the primordial lunar crust and as such calls into question the 

efficacy of the lunar magma ocean (LMO) model as an all-

encompassing explanation for the differentiation of the Moon 

especially since such a young age is overlapped with and su-

perseded by some samples of the hypothesized later-forming 

Mg-suite [5]. To investigate the petrologic history of 62236, a 

crystal-by-crystal examination approach was used. 

Methods: 5 thin sections (sub-samples ,7; ,12; ,13; ,14; 

and ,58) were examined. Each thin section was imaged using 

a petrographic microscope in plane polar (PPL), cross polar 

(XPL), and reflected light (RL). Due to three of the thin sec-

tions (,12; ,13;  and ,14) being much thicker than normal, only 

reflected light was usable for navigation and providing tex-

tural context for subsequent analyses. Major and minor ele-

ment compositions for plagioclase, pyroxene and olivine min-

erals were obtained using a Cameca SX-50 electron micro-

probe. In-situ trace element analyses of plagioclase and pyrox-

ene were obtained on thin sections ,12; ,13; and ,14 using laser 

ablation ICP-MS at the MITERAC facility at Notre Dame. 

Trace element data were reduced using the GLITTER soft-

ware [6]. Calcium was used as the internal standard while a 

NIST 612 glass was used as an external standard [7]. 

Results and Discussion:  The highly cataclasized nature 

of 62236 was revealed in all thin sections (Fig. 1).  

Electron Microprobe Analysis: Anorthite in plagioclase 

ranges from An91.7-98.9 (Fig. 2). There exists a general grouping 

of lower An values for thin sections ,12 and ,58 while a higher 

grouping exists for ,13 and ,14. Sub-sample ,7 contains plagi-

oclase that is intermediate in composition. The rims of the pla-

gioclase grains yield slightly elevated FeO values than their 

corresponding cores consistently across all thin sections (0.03-

0.07 percent higher on average per thin section). The expected 

crystallization trend for these plagioclase grains would be for 

FeO to increase with a decreasing An content, however, this 

trend is absent in these samples. Instead, the plagioclase grains 

in these samples show no crystallization trend between anor-

thite and FeO, which serves as evidence that these plagioclase 

grains have experienced some post-crystallization re-equili-

bration and/or are mixed lithologies. The general cataclastic 

nature of this sample (Fig. 1) is consistent with this hypothesis. 

The pyroxene compositions of 62236 are displayed in Figure 

3. Low-Ca pyroxenes yield Mg#s (calculated as molar 

Figure 1: Example photomicrographs of two thin sec-
tions of 62236.  (a) 62236,7 in XPL and (b) 62236,13 in 
RL. The bars in each photo denote 1 mm 

(a) 

(b) 

Figure 2: Anorthite versus weight percent FeO for plagioclase 
grains in 62236. Filled in symbols represent cores while the 
empty symbols represent rims. 
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Mg/[Mg+Fe]*100) ranging from 52.6-70.4, while high-Ca py-

roxenes yield Mg#s of 67.1-76.8.  

LA-ICP-MS Analysis:  Trace element data were gathered 

on plagioclase and pyroxene grains for 3 of the thin sections 

available. Partition coefficients were calculated following the 

method outlined in [8] for plagioclase and [9-11] for pyroxene. 

All calculations were completed assuming a temperature of 

1000˚C as determined by Equation 3 in [12] assuming an ini-

tial LMO depth of 1000 km (Fig. 4). Plagioclase equilibrium 

liquids are variable and fall into 3 general types: flat, light rare 

earth element (LREE) enriched relative to the heavy REE, and 

LREE depleted relative to the heavy REE. Models of LMO 

evolution [12,14-17] allow for flat and LREE enriched liquid 

profiles for LMO products, consistent with the pyroxene equi-

librium liquids and some of those derived from plagioclase. 

However, those that are LREE depleted are inconsistent with 

models of LMO evolution. The pyroxene equilibrium liquids 

show a LREE enrichment akin to a KREEP-like signature [18] 

with all having a normalized Ce/Yb ratio near or greater than 

2 indicating some interaction with a KREEP component. The 

plagioclase liquids indicate these crystals were not derived 

from the LMO or underwent subsolidus re-equilibration after 

formation. 

Conclusions:  FAN 62236 is a severely cataclasized sam-

ple of the lunar crust. Major element analysis indicates that the 

plagioclase grains have likely undergone re-equilibration 

post-crystallization. The mechanism for this is unclear, how-

ever, the texture of the thin sections leads to the conclusion 

that this is likely impact related. Trace element data of plagi-

oclase and pyroxene grains reveal that this sample contains 

some non-LMO derived material as well as evidence for inter-

action with KREEP. This sample likely represents a mixed li-

thology containing endogenous LMO material coupled with 

material modified either through the result of an impact or in-

teraction with KREEP and is therefore not LMO-derived. 
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Figure 4: (a) Plagioclase equilibrium liquids at 1000˚C and (b) corresponding plagioclase REE values; (c) pyroxene 

equilibrium liquids  at 1000˚C and (d) corresponding pyroxene REE values. All values normalized to chondrite [13]. 
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Figure 3: 62236 pyroxene compositions separated by thin section 
(corresponding symbols as denoted in Figure 2) 
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