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Introduction: The imaging spectrometer MERTIS
(Mercury Radiometer and Thermal Infrared Spectrom-
eter, Figure 1) is part of the payload of ESA/JJAXA’s
recently launched BepiColombo mission [1,2]. The
instrument consists of an IR-spectrometer and radiome-
ter, which observe the surface in the wavelength range
of 7-14 um and 7-40 um, respectively. The scientific
objectives [2,3] are to
a) study Mercury’s surface composition,

b) identify rock-forming minerals,
¢) globally map the surface mineralogy, and
d) study surface temperature and thermal inertia.

Figure 1: MERTIS flight model. Dimension of the
housing are 180x180x130 mm.

In order to interpret the results obtained by
MERTIS during the mission, we are investigating Mer-
cury analog minerals at the IRIS (Infrared and Raman
for Interplanetary Spectroscopy) laboratory of the Insti-
tut fir Planetologie at the University of Munster. On-
going analyses provide a spectral database, which will
enable the interpretation of MERTIS spectral data.

Here we present results of a deconvolution model
to quantify abundances of mineral mixtures [4,5]. This
model has previously been validated for spectral un-
mixing of NASA RELAB data [4] and lunar analog
materials [5]. In the framework of MERTIS it will be
applied to data obtained at the IRIS laboratory. First
results of olivine and pyroxene mixtures will be pre-
sented at the meeting.

Spectral mixing: Planetary surfaces are composed
of a variety of different minerals. Therefore the ob-
tained spectral data reflect a mixture of these minerals
and deconvolution of the spectral data is necessary to
quantify mineral abundances [6]. Two different kinds

of mixtures, namely macroscopic and microscopic mix-
tures are applied to the solution of this problem [e.g.,
7,8]. Assuming a macroscopic mixture, light rays inter-
act only with members of one distinct group or mineral
before reaching the detector (Figure 2.a). The spectral
reflectance of a mixture in this case is simply a
weighted sum of the endmember’s reflectance spectra
[4]. In microscopic mixtures particles are not separate
and therefore the incident light rays can freely interact
with different minerals (Figure 2.b) [5]. This results in
a non-linear mixture of the reflectance.

icroscopic mixture.

Figure 2: Comparison of macroscopic (a) and micro-
scopic (b) mixtures. (a) Endmembers are spatially
separated, thus light rays incident on a macroscopic
mixtures are reflected by only one endmember.

(b) On a microscopic mixture incident light rays are
possibly reflected by multiple distinct endmembers
[Fig. by 4,5].

Planetary surfaces, such as the hermean regolith
exhibit microscopic mineral mixtures, therefore it re-
quires a non-linear unmixing model [9].

The reflectance of the planetary surfaces is com-
monly modeled by the Hapke model [10-12]. The in-
trinsic reflectivity of an average single surface is de-
scribed by the “single-scattering albedo” [10]. Multiple
scattering within a surface is governed by the incidence
and emission angle, but depends also non-linearly on
the single-scattering albedo. Scattering behavior of an
individual particle is described by a “single-particle
scattering function”. The full set of equations is given
by [10].

IR spectroscopy: At the IRIS laboratory, samples
are sieved in grain size fractions of 0-25um, 25-
63 um, 63-125 um, and 125-250 um. For the analysis
presented here we focus on the 63-125 um fraction, as
this was also used by [13] for further investigations.
Samples are placed in aluminum cups and analyzed by
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a Bruker Vertex 70v spectrometer with an A513 varia-
ble mirror reflectance stage for 20° incidence (i) / 30°
emergence (e), and 30°(i)/30°(e) angles. After back-
ground calibration using a commercial diffuse gold
standard (INFRAGOLD™) a total of 512 scans were
accumulated to ensure high signal-to-noise ratios.

Samples: Olivine (Fo91) from Dreiser Weiher,
Germany, and pyroxene (En87) from Bamble, Norway
were used for IR measurements. The crystals were
ground in a steel mortar. These samples were further
investigated through a variety of analytical techniques
[13], such as

- Light microscopy
Electron microscopy
Irradiation experiments
-  TEM.

First results: Here we present results of spectral
unmixing FTIR analyses of olivine and pyroxene mix-
tures, investigated with the Vertex 70v spectrometer at
the IRIS laboratory. The spectral data were obtained
under specular geometries of 20°(i)/30°(e) and
30°(i)/30°(e) angles using an A513 variable mirror
reflectance stage. Spectral data of the endmembers and
mixtures are shown in Figure 3 for 20°(i)/30°(e), and
Figure 4 for 30°(i)/30°(e).

The spectral unmixing of these mixtures show very
good consistency with the sample mixtures:

Actual % Computed %
20°(1)/30°(e)  30°(i)/30°(e)

Mix 1

Olivine 30 29.37 28.72
Pyroxene 70 70.63 71.28
Mix 2

Olivine 70 71.03 72.27
Pyroxene 30 28.97 27.73

Ongoing work: At the IRIS laboratory, we will fur-
ther investigate Mercury analog material and their mix-
tures applying various analytical techniques. With
these data we will obtain a database that will enable to
correctly interpret the MERTIS results, once in orbit
around Mercury.
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Figure 3: IR reflectance spectra of olivine, pyroxene
and their mixtures under 20°(i)/30°(e) angles in the
MERTIS relevant wavelength range of 7-14 pm..
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Figure 4: IR reflectance spectra of olivine, pyroxene
and their mixtures under 30°(i)/30°(e) angles in the
MERTIS relevant wavelength range of 7-14 pm.
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