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Sulfate is an ion ubiquitously present on Earth to-
day. Oxidative weathering and evaporite dissolution
constitute two of the most important sources of dis-
solved sulfate in ground and surface waters. Other
minor sources include atmospheric secondary sulfate
deposition and fertilizer application. Each of the
sources has their characteristic sulfur and oxygen iso-
tope compositions, and the §*S and increasingly in
combination with its associated &80 are used to deci-
pher the sources and formation pathways of river and
groundwater sulfate. Assisted by ion chemistry data,
the 6%S and 880 of dissolved sulfate often reveal the
chemical processes and degree of weathering in a river
basin or a groundwater system. Despite the resolving
power of the §*S and §'80, ambiguities remain on the
source partition due largely to overlapping parameter
ranges for end-members. In past two decades, theoreti-
cal and analytical advancement in sulfate triple-oxygen
and quadruple-sulfur isotope compositions, i.e. the
8180 and 670 or AYO for oxygen and the §%*S, A®S,
and A%S for sulfur, has provided us higher-
dimensional parameters to further resolve the origin of
sulfate in diverse Earth environments. In particular,
sulfate records from the distant past have uncovered
very different Earth atmosphere-biosphere-
hydrosphere systems, so different that these past sys-
tems may well be treated as different planet conditions.

A recent study on the Mississippi River basin
(MRB) has shown that there are resolvable differences
in triple-oxygen isotope compositions of the dissolved
sulfate [1]. While parameter AYO does add a new per-
spective, a clear interpretation was hindered by a lack
of reference frames in §'®0-AYO space, which is es-
sential when the AYO range is small relative to meas-
urement resolution. Here we synthesized, statistically
treated the published sulfate triple-oxygen isotope data
and constructed end-member ranges in &'%0-AYO
space for sulfate derived from sulfide mineral oxida-
tion today and for evaporite sulfate of the Ediacaran
Period and Phanerozoic Eon. The defined 2-D space
encompassed nearly all the MRB data and offered a
visually straightforward way of interpreting sulfate
source partition and origins. When placing the modern
hydrogeochemical §'®0-AYO space in the broader
sulfate 5*%0-AY0 space defined by data throughout the
3.8 hillion-year geological records, we see the data
today representing a snapshot of an evolving Earth
system (Fig. 1).

The constructed sulfate $'¥0-AO space here can
be applied to studying potentially diverse sulfate end-
members on Mars. In the meantime, to confirm the
validity of the §'0-A'"0 2-D range for sulfate derived
from sulfide oxidation, we must calibrate a few critical
parameters during sulfide oxidation processes, includ-
ing the 0 (the triple isotope exponent) value for equi-
librium sulfite-water exchange and the KIEs and 6kie
for sulfite oxidation to sulfate.
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Fig. 1. Major sulfate end-members in §°80-A’YO
space, modern and geological times.
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