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Introduction:  Ground based radar observations of 

Mercury over two decades ago yielded maps of bright 
and depolarizing features near the poles [1, 2] and sub-
sequent radar measurements isolated these abnormali-
ties to the permanently shadowed regions [3].  These 
features were attributed to frozen water ice at the ob-
served locations of the anomalies. Following these ob-
servations were the seminal papers based on the neutron 
spectrometer [4] and the Mercury Laser Altimeter 
(MLA) [5] on board the MErcury Surface, Space ENvi-
ronment, GEochemistry, and Ranging (MESSENGER) 
spacecraft, both of which were in agreement that the 
PSRs contained water ice covered with a thin layer of 
possible organic material.  Generally, it is believed that 
water ice and other volatile organic material was deliv-
ered via meteoritic impacts [4].  Here, we present an al-
ternative source term for molecular water based on our 
recent efforts modelling solar wind interactions on the 
lunar surface [6]. 

  It is well known that proton implantation into metal 
oxides results in the formation of chemically bound hy-
droxyls [7].  These hydroxyls have generally been ac-
cepted as the source of the 2.8 µm infrared absorption 
band observed on the lunar surface [8]. Previous solar 
wind modelling efforts on airless bodies have mainly fo-
cused on the moon and primarily include diffusion of 
the implanted hydrogen up to the grain surface, where-
upon it reacts, forms molecular hydrogen and subse-
quently dissipates from the surface [9-11].  Our model 
takes into consideration a well-known process known as 
recombinative desorption.  Here, the implanted hydro-
gen will diffuse to the grain surface resulting in dangling 
M–OH bonds (M being a generic metal cation, e.g. Si, 
Al, Mg, Ti).  From here, neighboring M-OH sites will 
react to form molecular water, M-OH + M-OH  MOM 
+ H2O.  Typically, the activations energies necessary for 
recombinative desorption (RD) to occur are prohibi-
tively  large (~1 eV).  However, Mercury has two cir-
cumstances that help overcome this barrier.  First, the 
surface temperatures are very high and second, the sur-
face mineral compositions has large amounts (percent 
weight) of MgO [12] which has a relatively low RD ac-
tivation energy (~0.6 eV) [13].  Utilizing the estimated 
precipitating proton flux [14] and these known OH for-
mation and loss processes, an atomistic and molecular 
model describing the fate of solar wind-induced hy-
droxyl groups was applied to the surface of Mercury. 
Specifically, we incorporate experimentally derived dif-
fusion constants, cross sections and rates for interfacial 

OH formation and destruction involving water and hy-
drogen formation via recombinative desorption, photo-
destruction, and interfacial surface reactions with 
OH/H2O and the soil (serpentinization). 

Results: Preliminary results (Figure 1) show that 
molecular water is easily formed at Mercury relevant 
temperatures where protons are impinging onto the sur-
face. As expected the water adsorbed on the night side 
will sublimate upon reaching the dayside terminator 
where it will hop until it reacts with the surface via dis-
sociative adsorption (i.e. H2O + M  MOH + H) on the 
surface or physisorbs at a cold site i.e. night side or per-
manently shadowed regions. If the cold site is a perma-
nently shadowed region, the frozen water is stable over 
thousands of years. Gas phase water will ultimately suc-
cumb to photo-dissociation, dissociative adsorption or 
molecular re-adsorption at a cold spot on the planet’s 
surface.  Consequently, a significant amount of water is 
not expected in the exosphere but is expected in perma-
nently shadowed regions and near/on the poles 

 
Figure 1: Location of frozen molecular water on the 

surface on mercury after simulating solar wind implan-
tation and kinetics of recombinative desorption after six 
complete orbits.  Red lines designate day and night side 
terminators.  

Summary: Our solar-wind initiated reaction cycle 
has been adapted to examine the possible source term 
for molecular water on Mercury. The formation and loss 
mechanisms of solar wind produced chemically bound 
hydroxyl (-OH) groups on the surface of Mercury have 
been investigated by assuming that hydroxyls are con-
stantly removed and replenished via a cycle that primar-
ily involves formation and release H2O(g). 
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