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Introduction:  The discoveries of main belt comets 

(MBCs) (e.g., [1][2]) in early twentieth century have 
triggered great interest of the planetary society as these 
volatile rich bodies are located in the main belt and thus 
may have played a key role in supplying water to the 
early Earth. Therefore, MBCs are interesting and im-
portant candidate objects for space missions [3][4]. 
Here we first summarize the scientific objectives of the 
optical and infrared spectrometers for a proposed flyby 
mission to 133P/Elst-Pizarro. Then we present the ob-
servational data of visible, near-infrared, thermal infra-
red spectra and phase curves that are currently available. 
Finally we describe the design concept for the spectrom-
eters based on the known optical and thermal properties 
of the target.  

Scientific objectives:  (1) Determine the composi-
tions and production rates of volatiles (H2O, CO2, NH3, 
CH4, H2S, and others); (2) Search for and characterize 
organic materials (C2H6, CH3OH, H2CO, HCN etc.); (3) 
Determine the size distributions and production rate of 
dust particles; (4) Characterize the mineralogy, geology 
and surface structures of the body; (5) Understand the 
triggering mechanisms of activities and characterize any 
subsurface materials exposed; (6) Determine the diurnal 
and orbital activities that controlled by both the body’s 
geometric properties and thermal environment; (7) 
Compare the results with other missions to asteroids and 
comets to understand the formation and evolution of the 
MBCs. 

 Observational data:  The visible [5] and near-in-
frared [6] reflectance spectra of 133P/E-P are shown in 
Fig.1 (a). As 133P/E-P appears to be B or F type, the 
spectra of (419) Aurelia and (704) Interamnia (from 
Small Body Node) are also shown for comparisons. The 
thermal infrared spectra measured by WISE [7] and 
Spitzer with NEATM fitting to Spitzer are shown in Fig. 
1(b). The disk-integrated phase curves (R-filter) for 
133P/E-P [8] and the C-type (253) Mathilde [9] (with 
diameter and distances taken into account and converted 
to radiance factors), as shown in Fig.2, are fitted by 
Hapke’s integral brightness function with 5 parameters 
(single scattering albedo, shadow hiding opposition pa-
rameters BS0 and h, two-term Henyey-Greenstein phase 
function parameters b and c, with a fixed roughness of 
20°) [10].  These observational data and model fittings 

can be used to constrain the surface materials and pay-
load development.  

 
Fig. 1. (a)Visible and near-infrared reflectance spectra of 
133P/E-P [5][6] and two F bodies, (419) Aurelia and (704) In-
teramnia, (b) WISE [7] and Spitzer measured thermal infrared 
spectra of 133P/E-P with NEATM fitting to Spitzer.  

 

 
Fig. 2. Phase curve of 133P/E-P and that of C-type (253) 
Mathilde with 5-parameter Hapke model fitting. All phase 
curve data in absolute magnitude have been converted to radi-
ance factor. 

 
 Design concept:  Our proposed spectral coverage is 

from 0.4 to 50 µm by using two spectrometers covering 
0.4~5 µm [11] and 5.7~50 µm [12], respectively. The 
visible and near infrared imaging spectrometer (VIIS) 
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consists of a Shafer telescope and an Offner spectrome-
ter (Fig. 3) covering 0.4 to 5 µm with a spectral resolu-
tion of 5 nm in the visible and 10 nm in the near infrared, 
respectively. The spatial resolution of the VIIS is 0.5 m 
at an observing distance of 5 km. The compactness of 
the VIIS is achieved by dispersing both visible and near-
infrared light beams through the same grating substrate 
with different densities of grooves (Fig. 4). The signal 
to noise ratio of the VIIS is better than 100 using cryo-
genic optics technology. 

 

 
Fig. 3. Optical system of visible and near-infrared im-
aging spectrometer.  
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Fig. 4. Grating configuration of the VIIS. 

 
The mid- and far-infrared spectra will be measured 

by a thermal emission spectrometer (TES) with a wave-
length coverage of 5.7~50 µm [12]. To meet the require-
ments of wide spectral coverage, high spectral resolu-
tion (8 cm-1) and high signal-to-noise ratio, a Ritchey-
Chretien optical system (Fig. 5), a time modulation Fou-
rier transform spectrometer and uncooled pyroelectric 
detector are employed. The major components of the 
TES are shown in Fig. 6. The key component is an in-
terferometer (Fig. 7) with two corner cubes and swing 
arms. The spatial resolution of TES is 10 m at an ob-
serving distance of 5 km. The TES uses a pyroelectric 
detector working at ambient temperature and the signal 
to noise ratio of the spectrometer is better than 320 from 
5.7 to 35 µm.   

Summary: The prototype instruments are under de-
velopment and will be tested in simulated space envi-

ronment. Extensive work on their calibrations, charac-
terizations and measurements on analog materials will 
be carried out.  

 
Fig. 5. Optical system of the thermal emission spec-

trometer.   
 

 
Fig. 6. Major components of the thermal emission 
spectrometer.  

 
Fig. 7. The interferogram is generated by the Michel-
son interferometer in every two seconds. 
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