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Introduction:  The presence of evaporitic miner-

als, such as halite (NaCl) and gypsum (CaSO4•2H2O) 
on a planet can be interpreted as evidence that the 
planet has had a wet condition in the past. The sedi-
mentation of evaporites is an inevitable outcome, for 
example, when a lake is dried up [e.g., 1]. The miner-
als interpreted to be of evaporitic origins have been 
found on Mars [e.g., 2].  

Here, we consider a situation that hypervelocity 
impacts occur on ancient dry lakes such as playas. 
The threshold of vaporization/devolatilization of 
evaporites against growing shock pressure are im-
portant to understand the response of the atmos-
phere/hydrosphere after an intense perturbation due to 
impacts. In addition, shock-induced water loss from 
gypsum has been attracted an attention as a new 
shock indicator [e.g., 3]. Recently, we developed an 
ideal experimental system to investigate the shock 
vaporization/devolatilization in an open system with-
out any diaphragms [4]. In this study, we applied the 
system to halite and gypsum samples. 

Experiments: Impact experiments were conduct-
ed using a two-stage light gas gun placed at the hy-
pervelocity impact facility [5] of Planetary Explora-
tion Research Center of Chiba Institute of Technology 
(PERC/Chitech), Japan. The system for gas analyses 
and the experimental procedure have been introduced 
in the previous abstract [4].   

Experimental conditions: Natural samples of hal-
ite and gypsum were used as targets. The targets were 
shaped as blocks. The masses of halite and gypsum 
blocks were ~1 kg and ~0.6 kg, respectively. We also 
used a natural basalt block for a blank experiment. 
Spheres made of oxides, which are fused quartz and 
Al2O3, with the diameter of 2 mm and 1.5 mm were 
used for the halite and gypsum, respectively. The im-
pact velocity was ranged from 1.9 to 7.2 km/s. A ny-
lon-slit sabot [6] was used to accelerate the projectile. 
The peak pressures at the impact point are estimated 
to be 10–110 GPa by the one-dimensional impedance 
method [e.g., 7]. Hereafter, the peak pressure is called 
as 1-D pressure. The shock Hugoniot parameters are 
taken from [8-10]. We produced a He gas flow using 
a rotary pump directed to a quadrupole mass spec-
trometer (QMS, Pfeiffer vacuum, Prisma plus 
QMG220) to introduce impact-generated vapor into 
the QMS efficiently. An experimental chamber was 
pressurized by the equilibrium pressure determined by 

a balance between He gas injection and the evacua-
tion by the pump to prevent the intrusion of the con-
taminant gases from the gun [4]. The equilibrium 
pressure was set to 500 Pa. To detect water vapor 
from the gypsum targets, we used a cold trap that uses 
liquid nitrogen in the experiments with gypsum. The 
temperature of the gypsum prior to a shot was ~250 K.  

Results: We describe the results of the mass spec-
trometry of shock-generated gases. Note that the ion 
current for the mass number M/Z = i is denoted as Ii.  

Halite: Figure 1a shows a typical example of the 
time variations of the ion currents of selected mass 
numbers. We detected the rise in I58 (Na35Cl+) and I70 
(35Cl2+) after the impact although the peak current 
ratios I58/I4 and I70/I4 were only 1–10 ppm. The cur-
rent ratio to I4 (He+) is roughly approximated as the 
partial pressure of the species with the mass number i 
of the experimental chamber because the total pres-
sure in the chamber was mostly supported by He.   

Figure 2a shows the time variations of the current 
ratios of I58/I4 at different shock pressures. We found 
that halite initiates vaporization between 18 GPa and 
31 GPa against growing 1-D shock pressure.  

Gypsum: Figure 1b is the same as Figure 1a except 
for the target material. The cold trap allowed us to 
largely reduce the background level of I18. The shock-
generated water vapor was clearly detected. In con-
trast, sulfur-bearing gases, such as SO2, were not 
clearly risen after the impact even at 7.2 km/s. The 
estimated 1-D pressure of this shot reaches 114 GPa.   

Figure 2b shows the same as Figure 2a except that 
the target was gypsum and that the current ratio I18/I4 
is shown. We observed the rises in I18/I4 even at 2.0 
km/s. In contrast, I18/I4 were staying at the background 

Figure 1. Time variations of selected species for (a) 
halite and (b) gypsum. The impact velocities of the 
shots are indicated in the figure. 
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Figure 2. Time variations of the current ratios. (a) 
The results for the (a) halite and (b) gypsum targets 
are shown. The results for Al2O3 and quartz projec-
tiles are displayed at the left and right panels, respec-
tively. The rises in I58/I4  and I18/I4 corresponds to the 
generation of NaCl and water vapor, respectively. 
 
level in the blank experiment at 2.0 km/s, suggesting 
that gypsum suffers the water loss at <11 GPa. 

Discussion and Conclusions: In the current ex-
perimental system, the quantitative measurements of 
the gases produced are not available. Here, we discuss 
the initiation of the vaporization/devolatilization of 
the evaporites with increasing 1-D pressure and the 
chemical composition of the generated vapor.  

Vaporization/Devolatilization threshold: The va-
porization/devolatilization of NaCl and gypsum occur 
at ~1,200 K [estimated by a thermodynamic calcula-
tion, e.g., 11] and ~370 K [e.g., 12] under a vacuum 
condition. Thus, if the post shock temperatures Tpost 
exceed the above temperatures, vaporiza-
tion/devolatilization should occur [e.g., 13]. Figure 3 
shows the post shock temperature as a function of the 
1-D pressures P1D. Note that an isentropic release 
from the peak shock state, the constant isochoric spe-
cific heat of the Dulong-Petit value were assumed  an 
d that the Mie-Grüneisen EOS was used in the Tpost 
calculation [e.g., 14]. We found that the vaporiza-
tion/devolatilization from the evaporites occurs at 
systematically lower P1D than expected by the simple 
thermodynamic estimate. These results imply that 
local energy concentration due to jetting [e.g., 15] and 
shear banding [16], and/or irreversible heating due to 
friction and plastic deformation [17], play a key role 
to determine the thresholds. 

Gas composition: Sulfur release from the gypsum 
targets were not clearly detected even at P1D = 114 
GPa. Nevertheless, the required shock pressure for 
incipient/complete sulfur release from anhydrite  
(CaSO4) has been estimated to be 32.5 GPa/122 GPa 

Figure 3. Post shock temperature for (a) halite and (b) 
gypsum as a function of the peak pressure at the im-
pact point. The data points on the curves indicate P1D 
investigated in this study. The circles indicate that the 
shock-generated gases were detected. The crosses 
represent that no gas release occurred.  
 
[18]. This difference between gypsum and anhydrite 
suggests that the stability of sulfur against impact 
shocks is largely different depending on the initial 
form of the sulfur-bearing sedimentary rocks. 
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