
UTILIZING DRONES AND MACHINE LEARNING FOR METEORITE SEARCHING AND

RECOVERY. S. L. Anderson1, P. A. Bland1, M. C. Towner1, J. P. Paxman1, 1Curtin University-Space

Science and Technology Center (GPO Box U1987, Perth, Western Australia, 6102.

seamus.anderson@postgrad.curtin.edu.au, p.bland@curtin.edu.au, martin.towner@curtin.edu.au,

j.paxman@curtin.edu.au).

 Abstract: Camera networks such as the

Desert Fireball Network (DFN) are designed to

observe fireballs for meteorite recovery with

associated orbits. Most parts of the data pipeline

can be partially or fully automated, allowing a

network to be maintained by a relatively small

staff. However, the outstanding issue that

requires large staff effort is the searching and

meteorite fall recovery. We train convolutional

neural networks to detect meteorites in drone-

obtained images of the Australian outback.

 Introduction: Fireball camera networks,

such as the Desert Fireball Network in Australia,

provide a unique insight into the meteoroid

population and orbits of objects that both burn

up and those that fall to Earth [1]. Recovery of

the resultant meteorites help to further

characterize the geochemistry and composition

of their source regions, providing a valuable

spatial context that is a useful complement to

asteroid sample return. The limiting factor in

meteorite-fall discovery for a digital facility like

the DFN is not observing meteorite entry, but

instead finding them once they have landed. Due

to the limitations of the observational hardware,

the predicted searching area for a meteorite is

typically 3-4 km2 but can be as high as 10 km2

or more. Expeditions to search an area in the

Australian outback are costly, in both money

and human time, and in many cases, multiple

expeditions are needed to cover the full search

areas. Humans are also fallible, becoming

fatigued during the day and through an

expedition.

 We propose replacing humans with drones

and machine learning to improve the framework

of recovering fallen meteorites. Convolutional

Neural Networks (CNNs), a subset of machine

learning, have proven useful for a staggeringly

wide range of image recognition tasks [2] and

can be easily applied to meteorite searching.

Aerial drones are the perfect vehicle to obtain

images of the search area, as they can cover an

area in a fraction of the time as compared to

traditional human-powered searches and

maintain consistent image quality and therefore

algorithm detection.

 Previous attempts to detect meteorites in this

way have some promising results [3]. We build

on the work of Citron et al., improving the drone

and imaging hardware we used in our trial run,

while also making alterations to their CNN

architecture, and taking a new approach to the

training data.

 Methods: To construct, train and use our

neural network, we used the Keras module with

TensorFlow backend [4], in Python 3.

 Instead of using our model to predict on an

entire 42 Mega-pixel image, approximately 100

m2 in area, we chose to train and predict on 200

x 200 pixel-tiles, to allow us to highlight areas

of high probability in each image. When we

predicted on an image, we also implemented a

125 pixel stride, which allowed us to avoid

splitting a meteorite onto two tiles, instead only

training the model to recognize full meteorites in

a tile. Otherwise, possible shadows or dark

regions appearing at the edge of a tile could

trigger false positives, or worse, result in a false

negative when a meteorite is cut off or split up.

 To train our network, we needed thousands of

tiles viewing the ground, both with and without

meteorites. Unfortunately, this unique data set

did not exist in the numbers we required, ideally

many thousands of images. So, we created a

synthetic data set, by taking top-down images

(with 1.75 mm/pixel resolution) of the of the

ground via drone, near Kenwick Wetlands, WA,

and split these images into 200 x 200 pixel-tiles.

We also assembled an image library of 100

meteorites with intact fusion crusts to be pasted

onto the tiles. We randomly chose half of the

tiles for alteration whereby, we selected a

meteorite, rotated it, resized it to between 15 and

75 pixels (2.5 to 13.1 cm), then pasted it over a

tile such that the meteorite was fully in the

frame, all with randomly generated parameters.

2426.pdf50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132)

 Figure 1.

Examples of our synthetic training set.

 We created 5000 tiles with meteorites

inserted into the frame, and 5000 unaltered tiles,

totaling 10,000 for training and validation. After

we had obtained images to create this training

data, we also placed black-spray painted rocks

(meteor-wrongs) on the ground and

photographed them at the same height and

resolution as the training images. After we

trained the model, we predicted on these meteor-

wrong images as a last check of our model fit,

this was as close to detecting real meteorites as

we could achieve.

 Results: Our model attained a 97% training

accuracy and a 95% validation accuracy. In our

test to detect meteor-wrongs, we set our

prediction threshold to 0.99, meaning any tile

with a 99% chance or more of being a meteorite

was labelled as such. With this threshold set, the

model correctly found 57 out of 75 meteor-

wrongs and incorrectly labelled 56 false

positives. In this context, false positives are

acceptable, although not ideal, as this merely

results in more follow up searching. Of more

concern is false negatives, whereby a genuine

meteorite is not detected. Analysis of a 5168 x

3448 image took an average of 8.5 seconds on a

2.5 GHz CPU. At this rate, a 20 minute flight

resulting in 500 images would take 70 minutes

to process on one laptop.

Figure 2.

Prediction over a meteor-wrong image.

 We have investigated similar, better fitting

models to the parameter set used here, with

smaller kernels and strides, at the cost of longer

prediction times, averaging 35 seconds per

image. Two ways to counter the longer

processing time would be to split the computing

task between multiple machines or, upgrade our

computation hardware to use one or more GPUs

instead of a single CPU. We will explore this

balance of model performance in future works.

 Conclusion: Our methodology of training a

model to detect meteorites using a fully

synthetic training set will allow us in the future

to quickly adapt our model to a new searching

area, without having to physically place

meteorites (or wrongs) in the field.

 Before we attempt to use this method to

search for fallen meteorites observed by our

network, we still need to validate our detection

with real meteorites, and test in more

challenging situations, such as when the target is

under foliage or in more diverse backgrounds.

 References:

[1] Bland P. A. et al. (2012) Australian Journal

of Earth Sci., 59, 177-187.

[2] Krizhevsky A. et al. (2012) Advances in

Neural Information Processing Systems,

Abstract #4824.

[3] Citron R. I. et al. (2017) Lunar & Planetary

Sci. Conf. 48, Abstract #2528.

[4] Abadi et al. (2015) www.tensorflow.org

2426.pdf50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132)

http://www.tensorflow.org/

