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     Abstract: Camera networks such as the 

Desert Fireball Network (DFN) are designed to 

observe fireballs for meteorite recovery with 

associated orbits. Most parts of the data pipeline 

can be partially or fully automated, allowing a 

network to be maintained by a relatively small 

staff. However, the outstanding issue that 

requires large staff effort is the searching and 

meteorite fall recovery. We train convolutional 

neural networks to detect meteorites in drone-

obtained images of the Australian outback. 

 

     Introduction: Fireball camera networks, 

such as the Desert Fireball Network in Australia, 

provide a unique insight into the meteoroid 

population and orbits of objects that both burn 

up and those that fall to Earth [1]. Recovery of 

the resultant meteorites help to further 

characterize the geochemistry and composition 

of their source regions, providing a valuable 

spatial context that is a useful complement to 

asteroid sample return. The limiting factor in 

meteorite-fall discovery for a digital facility like 

the DFN is not observing meteorite entry, but 

instead finding them once they have landed. Due 

to the limitations of the observational hardware, 

the predicted searching area for a meteorite is 

typically 3-4 km2 but can be as high as 10 km2 

or more. Expeditions to search an area in the 

Australian outback are costly, in both money 

and human time, and in many cases, multiple 

expeditions are needed to cover the full search 

areas. Humans are also fallible, becoming 

fatigued during the day and through an 

expedition. 

     We propose replacing humans with drones 

and machine learning to improve the framework 

of recovering fallen meteorites. Convolutional 

Neural Networks (CNNs), a subset of machine 

learning, have proven useful for a staggeringly 

wide range of image recognition tasks [2] and 

can be easily applied to meteorite searching. 

Aerial drones are the perfect vehicle to obtain 

images of the search area, as they can cover an 

area in a fraction of the time as compared to 

traditional human-powered searches and 

maintain consistent image quality and therefore 

algorithm detection. 

     Previous attempts to detect meteorites in this 

way have some promising results [3]. We build 

on the work of Citron et al., improving the drone 

and imaging hardware we used in our trial run, 

while also making alterations to their CNN 

architecture, and taking a new approach to the 

training data. 

     Methods: To construct, train and use our 

neural network, we used the Keras module with 

TensorFlow backend [4], in Python 3.  

     Instead of using our model to predict on an 

entire 42 Mega-pixel image, approximately 100 

m2 in area, we chose to train and predict on 200 

x 200 pixel-tiles, to allow us to highlight areas 

of high probability in each image. When we 

predicted on an image, we also implemented a 

125 pixel stride, which allowed us to avoid 

splitting a meteorite onto two tiles, instead only 

training the model to recognize full meteorites in 

a tile. Otherwise, possible shadows or dark 

regions appearing at the edge of a tile could 

trigger false positives, or worse, result in a false 

negative when a meteorite is cut off or split up. 

     To train our network, we needed thousands of 

tiles viewing the ground, both with and without 

meteorites. Unfortunately, this unique data set 

did not exist in the numbers we required, ideally 

many thousands of images. So, we created a 

synthetic data set, by taking top-down images 

(with 1.75 mm/pixel resolution) of the of the 

ground via drone, near Kenwick Wetlands, WA, 

and split these images into 200 x 200 pixel-tiles. 

We also assembled an image library of 100 

meteorites with intact fusion crusts to be pasted 

onto the tiles. We randomly chose half of the 

tiles for alteration whereby, we selected a 

meteorite, rotated it, resized it to between 15 and 

75 pixels (2.5 to 13.1 cm), then pasted it over a 

tile such that the meteorite was fully in the 

frame, all with randomly generated parameters.  
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         Figure 1.  

Examples of our synthetic training set. 

 

 

     We created 5000 tiles with meteorites 

inserted into the frame, and 5000 unaltered tiles, 

totaling 10,000 for training and validation. After 

we had obtained images to create this training 

data, we also placed black-spray painted rocks 

(meteor-wrongs) on the ground and 

photographed them at the same height and 

resolution as the training images. After we 

trained the model, we predicted on these meteor-

wrong images as a last check of our model fit, 

this was as close to detecting real meteorites as 

we could achieve. 

     Results: Our model attained a 97% training 

accuracy and a 95% validation accuracy. In our 

test to detect meteor-wrongs, we set our 

prediction threshold to 0.99, meaning any tile 

with a 99% chance or more of being a meteorite 

was labelled as such. With this threshold set, the 

model correctly found 57 out of 75 meteor-

wrongs and incorrectly labelled 56 false 

positives. In this context, false positives are 

acceptable, although not ideal, as this merely 

results in more follow up searching. Of more 

concern is false negatives, whereby a genuine 

meteorite is not detected. Analysis of a 5168 x 

3448 image took an average of 8.5 seconds on a 

2.5 GHz CPU. At this rate, a 20 minute flight 

resulting in 500 images would take 70 minutes 

to process on one laptop.  

 

 
Figure 2. 

Prediction over a meteor-wrong image. 

 

     We have investigated similar, better fitting 

models to the parameter set used here, with 

smaller kernels and strides, at the cost of longer 

prediction times, averaging 35 seconds per 

image. Two ways to counter the longer 

processing time would be to split the computing 

task between multiple machines or, upgrade our 

computation hardware to use one or more GPUs 

instead of a single CPU. We will explore this 

balance of model performance in future works. 

     Conclusion: Our methodology of training a 

model to detect meteorites using a fully 

synthetic training set will allow us in the future 

to quickly adapt our model to a new searching 

area, without having to physically place 

meteorites (or wrongs) in the field. 

     Before we attempt to use this method to 

search for fallen meteorites observed by our 

network, we still need to validate our detection 

with real meteorites, and test in more 

challenging situations, such as when the target is 

under foliage or in more diverse backgrounds. 

     References: 

[1] Bland P. A. et al. (2012) Australian Journal 

of Earth Sci., 59, 177-187.  

[2] Krizhevsky A. et al. (2012) Advances in 

Neural Information Processing Systems, 

Abstract #4824.  

[3] Citron R. I. et al. (2017) Lunar & Planetary 

Sci. Conf. 48, Abstract #2528.  

[4] Abadi et al. (2015) www.tensorflow.org 
 

2426.pdf50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132)

http://www.tensorflow.org/

